Chronic heart rate reduction remodels ion channel transcripts in the mouse sinoatrial node but not in the ventricle

2006 ◽  
Vol 24 (1) ◽  
pp. 4-12 ◽  
Author(s):  
Anne-Laure Leoni ◽  
Céline Marionneau ◽  
Sophie Demolombe ◽  
Sabrina Le Bouter ◽  
Matteo E. Mangoni ◽  
...  

We investigated the effects of chronic and moderate heart rate (HR) reduction on ion channel expression in the mouse sinoatrial node (SAN) and ventricle. Ten-week-old male C57BL/6 mice were treated twice daily with either vehicle or ivabradine at 5 mg/kg given orally during 3 wk. The effects of HR reduction on cardiac electrical activity were investigated in anesthetized mice with serial ECGs and in freely moving mice with telemetric recordings. With the use of high-throughput real-time RT-PCR, the expression of 68 ion channel subunits was evaluated in the SAN and ventricle at the end of the treatment period. In conscious mice, ivabradine induced a mean 16% HR reduction over a 24-h period that was sustained over the 3-wk administration. Other ECG parameters were not modified. Two-way hierarchical clustering analysis of gene expression revealed a separation of ventricles from SANs but no discrimination between treated and untreated ventricles, indicating that HR reduction per se induced limited remodeling in this tissue. In contrast, SAN samples clustered in two groups depending on the treatment. In the SAN from ivabradine-treated mice, the expression of nine ion channel subunits, including Navβ1 (−25%), Cav3.1 (−29%), Kir6.1 (−28%), Kvβ2 (−41%), and Kvβ3 (−30%), was significantly decreased. Eight genes were significantly upregulated, including K+ channel α-subunits (Kv1.1, +30%; Kir2.1, +29%; Kir3.1, +41%), hyperpolarization-activated cation channels (HCN2, +24%; HCN4, +52%), and connexin 43 (+26%). We conclude that reducing HR induces a complex remodeling of ion channel expression in the SAN but has little impact on ion channel transcripts in the ventricle.

2019 ◽  
Author(s):  
Sara Ballouz ◽  
Melissa M Mangala ◽  
Matthew D Perry ◽  
Stewart Heitmann ◽  
Jesse A Gillis ◽  
...  

AbstractCardiac electrical activity is controlled by the carefully orchestrated activity of more than a dozen different ion conductances. Yet, there is considerable variability in cardiac ion channel expression levels both within and between subjects. In this study we tested the hypothesis that variations in ion channel expression between individuals are not random but rather there are modules of co-expressed genes and that these modules make electrical signaling in the heart more robust.Meta-analysis of 3653 public RNA-Seq datasets identified a strong correlation between expression of CACNA1C (L-type calcium current, ICaL) and KCNH2 (rapid delayed rectifier K+ current, IKr), which was verified in mRNA extracted from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). In silico modeling, validated with functional measurements in hiPSC-CM, indicates that the co-expression of CACNA1C and KCNH2 limits the variability in action potential duration and reduces susceptibility to early afterdepolarizations, a surrogate marker for pro-arrhythmia.Impact StatementCoexpressed levels of potassium and calcium ion channel genes in the heart encode more robust cardiac electrophysiology and provide insights into genetic basis of arrhythmic risk


2020 ◽  
Vol 11 ◽  
Author(s):  
Azzah M. Alghamdi ◽  
Craig P. Testrow ◽  
Dominic G. Whittaker ◽  
Mark R. Boyett ◽  
Jules. C. Hancox ◽  
...  

Marked age- and development- related differences have been observed in morphology and characteristics of action potentials (AP) of neonatal and adult sinoatrial node (SAN) cells. These may be attributable to a different set of ion channel interactions between the different ages. However, the underlying mechanism(s) have yet to be elucidated. The objective of this study was to determine the mechanisms underlying different spontaneous APs and heart rate between neonatal and adult SAN cells of the rabbit heart by biophysical modeling approaches. A mathematical model of neonatal rabbit SAN cells was developed by modifying the current densities and/or kinetics of ion channels and transporters in an adult cell model based on available experimental data obtained from neonatal SAN cells. The single cell models were then incorporated into a multi-cellular, two-dimensional model of the intact SAN-atrium to investigate the functional impact of altered ion channels during maturation on pacemaking electrical activities and their conduction at the tissue level. Effects of the neurotransmitter acetylcholine on the pacemaking activities in neonatal cells were also investigated and compared to those in the adult. Our results showed: (1) the differences in ion channel properties between neonatal and adult SAN cells are able to account for differences in their APs and the heart rate, providing mechanistic insight into understanding the reduced pacemaking rate of the rabbit sinoatrial node during postnatal development; (2) in the 2D model of the intact SAN-atria, it was shown that cellular changes during postnatal development impaired pacemaking activity through increasing the activation time and reducing the conduction velocity across the SAN; (3) the neonatal SAN model, with its faster beating rates, showed a greater sensitivity to parasympathetic modulation in response to acetylcholine than did the adult model. These results provide novel insights into the understanding of the cellular mechanisms underlying the differences in the cardiac pacemaking activities of the neonatal and adult SAN.


Author(s):  
Ling-Ling Qian ◽  
Xiaojing Sun ◽  
Jingchun Yang ◽  
Xiao-Li Wang ◽  
Michael J. Ackerman ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172884 ◽  
Author(s):  
Julia Pollak ◽  
Karan G. Rai ◽  
Cory C. Funk ◽  
Sonali Arora ◽  
Eunjee Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document