The Chemical Transmission Mechanism of Excitation-Contraction Coupling in Skeletal Muscle

Physiology ◽  
1987 ◽  
Vol 2 (5) ◽  
pp. 182-186 ◽  
Author(s):  
J Vergara ◽  
K Asotra

There is a temperature-dependent lag between depolarization of transverse tubules by the action potential and onset of calcium release from the sacromplasmic reticulum that reveals the occurrence of a chemical step in excitation-contraction coupling. Recent studies suggest that in vertebrate muscle inositol 1,4,5-trisphosphate may act as a chemical link in this process.

2007 ◽  
Vol 130 (4) ◽  
pp. 365-378 ◽  
Author(s):  
Sanjeewa A. Goonasekera ◽  
Nicole A. Beard ◽  
Linda Groom ◽  
Takashi Kimura ◽  
Alla D. Lyfenko ◽  
...  

Ca2+ release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca2+ to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation–contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca2+ release during excitation–contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca2+ release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca2+ release during excitation–contraction coupling in skeletal muscle.


1974 ◽  
Vol 52 (6) ◽  
pp. 1126-1135 ◽  
Author(s):  
D. J. Parry ◽  
A. Kover ◽  
G. B. Frank

Exposure of frog toe muscles to 1 mM La3+ results in a decrease in amplitude and rate of tension development of potassium contractures and twitches. At this concentration La3+ also inhibits the uptake of calcium, both in the resting condition and during stimulation. Caffeine contractures are unaffected even after a 5-min pre-exposure to La3+. The depolarization induced by various concentrations of K+ is reduced by about 10 mV as is the amplitude of the action potential. The rate of rise of the action potential is reduced by about 40% after 1 min in La3+ Ringer. Neither the decreased amplitude nor the reduced rate of depolarization is considered to be sufficient to explain the inhibition of tension development. It is suggested that La3+ partially uncouples excitation from contraction by preventing the release of a trigger-Ca2+ fraction from some site on the muscle membrane. This fraction normally plays a role in excitation–contraction coupling, although some tension may still be developed in the absence of a trigger-Ca2+ influx.


Physiology ◽  
1988 ◽  
Vol 3 (6) ◽  
pp. 223-227 ◽  
Author(s):  
E Rios ◽  
G Pizarro

Three mechanisms are proposed for the transduction from action potential to Ca2+ release from the sarcoplasmic reticulum in skeletal muscle: Chemical mediation, a mechanical connection between transverse tubular membrane and sacroplasmic reticulum, and Ca2+-induced release of Ca2+. New biochemical, biophysical, and structural data favor a mechanical connection and add the possibility that Ca2+-induced Ca2+-release is working in parallel.


1990 ◽  
Vol 258 (2) ◽  
pp. H610-H615 ◽  
Author(s):  
J. C. Kentish ◽  
R. J. Barsotti ◽  
T. J. Lea ◽  
I. P. Mulligan ◽  
J. R. Patel ◽  
...  

The ability of Ca2+ or inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to release Ca2+ from cardiac sarcoplasmic reticulum (SR) was investigated using saponin-skinned ventricular trabeculae from rats. To overcome diffusion delays, rapid increases in the concentrations of Ca2+ and Ins(1,4,5)P3 were produced by laser photolysis of “caged Ca2+” (Nitr-5) and “caged Ins(1,4,5)P3”. Photolysis of Nitr-5 to produce a small jump in [Ca2+] from pCa 6.8 to 6.4 induced a large and rapid force response (t1/2 = 0.89 s at 12 degrees C); the source of the Ca2+ that activated the myofibrils was judged to be the SR, since it was blocked by 0.1 mM ryanodine or 5 mM caffeine. A smaller, slower, and less consistent release of SR Ca2+ was produced by photorelease of Ins(1,4,5)P3. The results demonstrate that these caged compounds can be used to study excitation-contraction coupling in skinned multicellular preparations of cardiac muscle. The data are consistent with a major role for Ca2(+)-induced Ca2+ release in cardiac activation, whereas the role for Ins(1,4,5)P3 may be to modulate, rather than directly stimulate, SR Ca2+ release.


FEBS Letters ◽  
1986 ◽  
Vol 197 (1-2) ◽  
pp. 1-4 ◽  
Author(s):  
Pompeo Volpe ◽  
Francesco Di Virgilio ◽  
Tullio Pozzan ◽  
Giovanni Salviati

2020 ◽  
Author(s):  
Agnė Tilūnaitė ◽  
David Ladd ◽  
Hilary Hunt ◽  
Christian Soeller ◽  
H. Llewelyn Roderick ◽  
...  

AbstractCalcium plays critical roles in cardiac cells, coupling electrical excitation to mechanical contraction with each heartbeat, while simultaneously mediating biochemical signals that regulate cell growth. While ryanodine receptors (RyRs) are fundamental to generation of elementary calcium release events (sparks) and global calcium elevations that underlie excitation-contraction coupling (ECC), calcium release via inositol 1,4,5-trisphosphate receptors (IP3Rs) is also reported in cardiomyocytes. IP3R calcium release modifies ECC as well as contributing to downstream regulation of hypertrophic gene expression. Recent studies suggest that proximal localisation of IP3Rs with RyRs contributes to their ability to modify Ca2+ handling during ECC. Here we aim to determine the mechanism by which IP3Rs modify Ca2+ handling in cardiomyocytes. We develop a mathematical model incorporating the stochastic behaviour of receptor opening that allows for the parametric tuning of the system to reveal the impact of IP3Rs on spark activation. By testing multiple spark initiation mechanisms, we find that Ca2+ release via IP3Rs result in increased propensity for spark initiation within the cardiac dyad. Our simulations suggest that opening of IP3Rs elevates Ca2+ within the dyad, which increase the probability of spark initiation. Finally, we find that while increasing the number of IP3Rs increases the probability of spark formation, it has little effect on spark amplitude, duration, or overall shape. Our study therefore suggests that IP3R play a critical role in modulating Ca2+ signaling for excitation contraction couplingAuthor summaryWhile Ca2+ release through ryanodine receptors (RyRs) initiates contraction in cardiomyocytes, the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) in cardiomyocytes is less clear with Ca2+ release through these channels being invoked in regulating ECC and hypertrophic signalling. RyRs generate cytosolic Ca2+ signals through elemental Ca2+ release events called sparks. The mechanisms by which IP3Rs influence cytosolic Ca2+ are not well understood. We created a 1D model of calcium spark formation in a cardiomyocyte dyad—the primary site of elemental RyR-based calcium release. We investigated possible behaviours of IP3Rs and their interaction with RyRs in generating Ca2+ sparks. We show that for high IP3 concentration, a large number of IP3Rs and high IP3R affinity are required to noticeably affect spark shape. At lower IP3 concentration IP3Rs can increase Ca2+ spark activity, but do not significantly alter the spark shape. Finally our simulations suggest that spark frequency can be reliably increased when IP3Rs activity is such that a small continuous Ca2+ flux is introduced to the dyad to elevate Ca2+, and not via brief but high Ca2+ release from these receptors.


Sign in / Sign up

Export Citation Format

Share Document