Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions

1997 ◽  
Vol 77 (3) ◽  
pp. 699-729 ◽  
Author(s):  
C. Franzini-Armstrong ◽  
F. Protasi

The ryanodine receptor (RyR) is a high-conductance Ca2+ channel of the sarcoplasmic reticulum in muscle and of the endoplasmic reticulum in other cells. In striated muscle fibers, RyRs are responsible for the rapid release of Ca2+ that activates contraction. Ryanodine receptors are complex molecules, with unusually large cytoplasmic domains containing numerous binding sites for agents that control the state of activity of the channel-forming domain of the molecule. Structural considerations indicate that long-range interactions between cytoplasmic and intramembrane domains control channel function. Ryanodine receptors are located in specialized regions of the SR, where they are structurally and functionally associated with other intrinsic proteins and, indirectly, also with the luminal Ca2(+)-binding protein calsequestrin. Activation of RyRs during the early part of the excitation-contraction coupling cascade is initiated by the activity of surface-membrane Ca2+ channels, the dihydropyridine receptors (DHPRs). Skeletal and cardiac muscles contain different RyR and DHPR isoforms and both contribute to the diversity in cardiac and skeletal excitation-contraction coupling mechanisms. The architecture of the sarcoplasmic reticulum-surface junctions determines the types of RyR-DHPR interactions in the two muscle types.

2005 ◽  
Vol 387 (2) ◽  
pp. 429-436 ◽  
Author(s):  
Claudia S. HAARMANN ◽  
Angela F. DULHUNTY ◽  
Derek R. LAVER

The aim of the present study was to explore interactions between surface-membrane DHPR (dihydropyridine receptor) Ca2+ channels and RyR (ryanodine receptor) Ca2+ channels in skeletal-muscle sarcoplasmic reticulum. The C region (725Phe-Pro742) of the linker between the 2nd and 3rd repeats (II–III loop) of the α1 subunit of skeletal DHPRs is essential for skeletal excitation–contraction coupling, which requires a physical interaction between the DHPR and RyR and is independent of external Ca2+. Little is known about the regulatory processes that might take place when the two Ca2+ channels interact. Indeed, interactions between C fragments of the DHPR (C peptides) and RyR have different reported effects on Ca2+ release from the sarcoplasmic reticulum and on RyR channels in lipid bilayers. To gain insight into functional interactions between the proteins and to explore different reported effects, we examined the actions of C peptides on RyR1 channels in lipid bilayers with three key RyR regulators, Ca2+, Mg2+ and ATP. We identified four discrete actions: two novel, low-affinity (>10 μM), rapidly reversible effects (fast inhibition and decreased sensitivity to Mg2+ inhibition) and two slowly reversible effects (high-affinity activation and a slow-onset, low-affinity inhibition). Fast inhibition and high-affinity activation were decreased by ATP. Therefore peptide activation in the presence of ATP and Mg2+, used with Ca2+ release assays, depends on a mechanism different from that seen when Ca2+ is the sole agonist. The relief of Mg2+ inhibition was particularly important since RyR activation during excitation–contraction coupling depends on a similar decrease in Mg2+ inhibition.


1968 ◽  
Vol 38 (1) ◽  
pp. 99-114 ◽  
Author(s):  
Nancy A. Staley ◽  
Ellis S. Benson

Frog ventricular cardiac muscle has structural features which set it apart from frog and mammalian skeletal muscle and mammalian cardiac muscle. In describing these differences, our attention focused chiefly on the distribution of cellular membranes. Abundant inter cellular clefts, the absence of tranverse tubules, and the paucity of sarcotubules, together with exceedingly small cell diameters (less than 5 µ), support the suggestion that the mechanism of excitation-contraction coupling differs in these muscle cells from that now thought to be characteristic of striated muscle such as skeletal muscle and mammalian cardiac muscle. These structural dissimilarities also imply that the mechanism of relaxation in frog ventricular muscle differs from that considered typical of other striated muscles. Additional ultrastructural features of frog ventricular heart muscle include spherical electron-opaque bodies on thin filaments, inconstantly present, forming a rank across the I band about 150 mµ from the Z line, and membrane-bounded dense granules resembling neurosecretory granules. The functional significance of these features is not yet clear.


2009 ◽  
Vol 587 (13) ◽  
pp. 3071-3079 ◽  
Author(s):  
Susan Treves ◽  
Mirko Vukcevic ◽  
Marcin Maj ◽  
Raphael Thurnheer ◽  
Barbara Mosca ◽  
...  

1961 ◽  
Vol 10 (4) ◽  
pp. 159-176 ◽  
Author(s):  
Lee D. Peachey

The structure of the longitudinal body muscles of Branchiostoma caribaeum has been studied by light and electron microscopy. These muscles are shown to be composed of fibers in the form of flat lamellae about 0.8µ in thickness, more than 100 µ wide, and reaching in length from one intermuscular septum to the next, a distance of about 0.6 mm. Each flat fiber is covered by a plasma membrane and contains a single myofibril consisting of myofilaments packed in the interdigitating hexagonal array characteristic of vertebrate striated muscle. Little or no sarcoplasmic reticulum is present. Mitochondria are found infrequently and have a tubular internal structure. These morphological observations are discussed in relation to a proposed hypothesis of excitation-contraction coupling. It is pointed out that the maximum distance from surface to myofilament in these muscles is about 0.5 µ and that diffusion of an "activating" substance over this distance would essentially be complete in less than 0.5 msec. after its release from the plasma membrane. It is concluded that the flat form of amphioxus muscle substitutes for the specialized mechanisms of excitation-contraction coupling thought possibly to involve the sarcoplasmic reticulum in higher vertebrate muscles.


2007 ◽  
Vol 130 (4) ◽  
pp. 365-378 ◽  
Author(s):  
Sanjeewa A. Goonasekera ◽  
Nicole A. Beard ◽  
Linda Groom ◽  
Takashi Kimura ◽  
Alla D. Lyfenko ◽  
...  

Ca2+ release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca2+ to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation–contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca2+ release during excitation–contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca2+ release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca2+ release during excitation–contraction coupling in skeletal muscle.


2001 ◽  
Vol 204 (21) ◽  
pp. 3727-3736 ◽  
Author(s):  
Y.-C. James Lin ◽  
Andrew N. Spencer

SUMMARYWhen jellyfish striated muscles were stimulated directly, the amplitude of contractile tension increased as the stimulation frequency increased. Application of 10 mmol l–1 caffeine reduced the amplitude of contractile tension and abolished this facilitatory relationship, indicating that calcium stores participate in excitation–contraction coupling. Calcium stores were identified ultrastructurally using enzymatic histochemistry to localize CaATPases, and potassium dichromate to precipitate calcium. Electron energy-loss spectroscopy was used to verify the presence of calcium in precipitates. Both CaATPase and calcium were localised in membrane-bound vesicles beneath the sarcolemma. We concluded that sub-sarcolemmal vesicles could act as calcium stores and participate in excitation–contraction coupling.


Physiology ◽  
2000 ◽  
Vol 15 (6) ◽  
pp. 281-284 ◽  
Author(s):  
Susan L. Hamilton ◽  
Irina Serysheva ◽  
Gale M. Strasburg

Excitation-contraction coupling in cardiac and skeletal muscle involves the transverse-tubule voltage-dependent Ca2+ channel and the sarcoplasmic reticulum Ca2+ release channel. Both of these ion channels bind and are modulated by calmodulin in both its Ca2+-bound and Ca2+-free forms. Calmodulin is, therefore, potentially an important regulator of excitation-contraction coupling. Its precise role, however, has not yet been defined.


Sign in / Sign up

Export Citation Format

Share Document