scholarly journals Analysis of Cylindrical Shells Using Generalized Differential Quadrature

1997 ◽  
Vol 4 (3) ◽  
pp. 193-198 ◽  
Author(s):  
C.T. Loy ◽  
K.Y. Lam ◽  
C. Shu

The analysis of cylindrical shells using an improved version of the differential quadrature method is presented. The generalized differential quadrature (GDQ) method has computational advantages over the existing differential quadrature method. The GDQ method has been applied in solutions to fluid dynamics and plate problems and has shown superb accuracy, efficiency, convenience, and great potential in solving differential equations. The present article attempts to apply the method to the solutions of cylindrical shell problems. To illustrate the implementation of the GDQ method, the frequencies and fundamental frequencies for simply supported-simply supported, clamped-clamped, and clamped-simply supported boundary conditions are determined. Results obtained are validated by comparing them with those in the literature.

2019 ◽  
Vol 55 (1-2) ◽  
pp. 42-52
Author(s):  
Milad Ranjbaran ◽  
Rahman Seifi

This article proposes a new method for the analysis of free vibration of a cracked isotropic plate with various boundary conditions based on Kirchhoff’s theory. The isotropic plate is assumed to have a part-through surface or internal crack. The crack is considered parallel to one of the plate edges. Existence of the crack modified the governing differential equations which were formulated based on the line-spring model. Generalized differential quadrature method discretizes the obtained governing differential equations and converts them into an algebraic system of equations. Then, an eigenvalue analysis was used to determine the natural frequencies of the cracked plates. Some numerical results are given to demonstrate the accuracy and convergence of the obtained results. To demonstrate the efficiency of the method, the results were compared with finite element solutions and available literature. Also, effects of the crack depth, its location along the thickness, the length of the crack and different boundary conditions on the natural frequencies were investigated.


2017 ◽  
Vol 24 (17) ◽  
pp. 3908-3919 ◽  
Author(s):  
Mouafo Teifouet Armand Robinson

The two-dimensional viscoelastic differential constitutive relation is employed in this paper, in order to establish the equation of motion of axially moving viscoelastic rectangular plate. Two boundary conditions are investigated, namely the clamped free and two opposite edges simply supported and two others free. The differential quadrature method is used to solve the resulting complex eigenvalues equation. The influence of boundary conditions on the instability of a moving viscoelastic plate is analyzed firstly, and secondly the effects of system parameters such as plate's viscosity and aspect ratio on the vibration frequencies are presented.


2010 ◽  
Vol 26 (1) ◽  
pp. 61-70 ◽  
Author(s):  
M. Ghayour ◽  
S. Ziaei Rad ◽  
R. Talebitooti ◽  
M. Talebitooti

AbstractFree vibration analysis of rotating composite laminated conical shells with different boundary conditions using the generalized differential quadrature method (GDQM), is investigated. Equations of motion are derived based on Love's first approximation theory by taking the effects of initial hoop tension and the centrifugal and Coriolis acceleration due to rotation and initial uniform pressure load into account. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equation applying the GDQM. The results are obtained for the frequency characteristics of different orthotropic parameters, rotating velocities, cone angles and boundary conditions. The presented results are compared with those available in the literature and good agreements are achieved.


Author(s):  
Siu-Tong Choi ◽  
Yu-Tuan Chou

Abstract The differential quadrature method has lately been more and more often used for analysis of engineering problems as an alternative for the finite element method or finite difference method. In this paper, static, dynamic and buckling analyses of structural components are performed by the differential quadrature method. To improve the accuracy of this method, an approach is proposed for selecting the sampling points which include base points and conditional points. The base points are taken as the roots of the Legendre polynomials. Accuracy of the problems analyzed will be increased by using the base points. The conditional points are determined according to boundary conditions and specified conditions of external load. A modified algorithm is proposed for applying two or more boundary conditions in a sampling point at boundary of domain, such that the higher-order partial differential equation can be solved without adding new sampling points. By applying this approach to variety problems, such as deflections of beam under nonuniformly distributed loading, vibration and buckling analyses of beam and plate, it is found that numerical results of the present approach are more accurate than those obtained by the equally-spaced differential quadrature method and is computationally efficient.


Sign in / Sign up

Export Citation Format

Share Document