Beam theory reformulation to implement various boundary conditions for generalized differential quadrature method

2022 ◽  
Vol 252 ◽  
pp. 113666
Author(s):  
M.M. Keleshteri ◽  
J. Jelovica
2019 ◽  
Vol 55 (1-2) ◽  
pp. 42-52
Author(s):  
Milad Ranjbaran ◽  
Rahman Seifi

This article proposes a new method for the analysis of free vibration of a cracked isotropic plate with various boundary conditions based on Kirchhoff’s theory. The isotropic plate is assumed to have a part-through surface or internal crack. The crack is considered parallel to one of the plate edges. Existence of the crack modified the governing differential equations which were formulated based on the line-spring model. Generalized differential quadrature method discretizes the obtained governing differential equations and converts them into an algebraic system of equations. Then, an eigenvalue analysis was used to determine the natural frequencies of the cracked plates. Some numerical results are given to demonstrate the accuracy and convergence of the obtained results. To demonstrate the efficiency of the method, the results were compared with finite element solutions and available literature. Also, effects of the crack depth, its location along the thickness, the length of the crack and different boundary conditions on the natural frequencies were investigated.


2010 ◽  
Vol 26 (1) ◽  
pp. 61-70 ◽  
Author(s):  
M. Ghayour ◽  
S. Ziaei Rad ◽  
R. Talebitooti ◽  
M. Talebitooti

AbstractFree vibration analysis of rotating composite laminated conical shells with different boundary conditions using the generalized differential quadrature method (GDQM), is investigated. Equations of motion are derived based on Love's first approximation theory by taking the effects of initial hoop tension and the centrifugal and Coriolis acceleration due to rotation and initial uniform pressure load into account. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equation applying the GDQM. The results are obtained for the frequency characteristics of different orthotropic parameters, rotating velocities, cone angles and boundary conditions. The presented results are compared with those available in the literature and good agreements are achieved.


2019 ◽  
Vol 25 (21-22) ◽  
pp. 2799-2818 ◽  
Author(s):  
Leila Bemani Khouzestani ◽  
Ahmad Reza Khorshidvand

The current study presents free vibration and stress analyses of an annular plate which is made of saturated porous materials based on the first order shear deformation plate theory which accounts for the shear deformation effects. The pores are distributed in the thickness direction according to three different types, namely, porosity nonlinear nonsymmetric distribution, porosity nonlinear symmetric distribution, and porosity monotonous distribution. Employing Hamilton’s principle and variational formulation, the motion equations are derived and solved via the generalized differential quadrature method as a highly accurate and rapid convergence numerical method for various boundary conditions. The results are validated with simpler cases in the literature and different parameters of the structures such as pores distribution, porosity, pressure of fluids within the pores, and also the aspect ratio of the plate is considered and discussed regarding their effects on the results. It is seen that enhancing the porosity coefficient which means increasing the void volume, reduces the structure’s stiffness more than its density and so the frequency and stresses decrease. The findings of this work may be useful to design structures with desired mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document