scholarly journals Performance of Composite Implicit Time Integration Scheme for Nonlinear Dynamic Analysis

2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
William Taylor Matias Silva ◽  
Luciano Mendes Bezerra

This paper presents a simple implicit time integration scheme for transient response solution of structures under large deformations and long-time durations. The authors focus on a practical method using implicit time integration scheme applied to structural dynamic analyses in which the widely used Newmark time integration procedure is unstable, and not energy-momentum conserving. In this integration scheme, the time step is divided in two substeps. For too large time steps, the method is stable but shows excessive numerical dissipation. The influence of different substep sizes on the numerical dissipation of the method is studied throughout three practical examples. The method shows good performance and may be considered good for nonlinear transient response of structures.

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 785
Author(s):  
Arman Rokhzadi ◽  
Musandji Fuamba

This paper studies the air pressurization problem caused by a partially pressurized transient flow in a reservoir-pipe system. The purpose of this study is to analyze the performance of the rigid column model in predicting the attenuation of the air pressure distribution. In this regard, an analytic formula for the amplitude and frequency will be derived, in which the influential parameters, particularly, the driving pressure and the air and water lengths, on the damping can be seen. The direct effect of the driving pressure and inverse effect of the product of the air and water lengths on the damping will be numerically examined. In addition, these numerical observations will be examined by solving different test cases and by comparing to available experimental data to show that the rigid column model is able to predict the damping. However, due to simplified assumptions associated with the rigid column model, the energy dissipation, as well as the damping, is underestimated. In this regard, using the backward Euler implicit time integration scheme, instead of the classical fourth order explicit Runge–Kutta scheme, will be proposed so that the numerical dissipation of the backward Euler implicit scheme represents the physical dissipation. In addition, a formula will be derived to calculate the appropriate time step size, by which the dissipation of the heat transfer can be compensated.


1990 ◽  
Vol 112 (2) ◽  
pp. 106-114
Author(s):  
N. M. Patrikalakis ◽  
D. Y. Yoon

An efficient solution scheme to simulate the nonlinear motions of hanging risers based on an adaptive nonuniform grid finite difference method and an implicit time integration scheme is presented. Dynamic buckling-type response of hanging risers under rigid hang-off due to heave acceleration of the support platform in extreme excitation conditions is studied, and the important parameters affecting the response are identified. Significant reduction of motions and resulting stresses is obtained by employing compliant hang-off.


Author(s):  
G. F. Mathews ◽  
R. L. Mullen ◽  
D. C. Rizos

This paper presents the development of a semi-implicit time integration scheme, originally developed for structural dynamics in the 1970’s, and its implementation for use in Discrete Element Methods (DEM) for rigid particle interaction, and interaction of elastic bodies that are modeled as a cluster of rigid interconnected particles. The method is developed in view of ballast modeling that accounts for the flexibility of aggregates and the arbitrary shape and size of granules. The proposed scheme does not require any matrix inversions and is expressed in an incremental form making it appropriate for non-linear problems. The proposed method focuses on improving the efficiency, stability and accuracy of the solutions, as compared to current practice. A critical discussion of the findings of the studies is presented. Extended verification and assessment studies demonstrate that the proposed algorithm is unconditionally stable and accurate even for large time step sizes. It is demonstrated that the proposed method is at least as computationally efficient as the Central Difference Method. Guidelines for the implementation of the method to ballast modeling are discussed.


Sign in / Sign up

Export Citation Format

Share Document