scholarly journals Use of the 2-Pyridinealdoxime/N,N′-Donor Ligand Combination in Cobalt(III) Chemistry: Synthesis and Characterization of Two Cationic Mononuclear Cobalt(III) Complexes

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Konstantis F. Konidaris ◽  
Catherine P. Raptopoulou ◽  
Vassilis Psycharis ◽  
Spyros P. Perlepes ◽  
Evy Manessi-Zoupa ◽  
...  

The use of 2-pyridinealdoxime (paoH)/N,N′-donor ligand (L-L) “blend” in cobalt chemistry has afforded two cationic mononuclear cobalt(III) complexes of the general type [Co(pao)2(L-L)]+, where L-L = 1,10-phenanthroline (phen) and 2,2′-bipyridine (bpy). The CoCl2/paoH/L-L (1 : 2 : 1) reaction system in MeOH gives complexes [CoIII(pao)2(phen)]Cl⋅2H2O (1⋅2H2O) and [CoIII(pao)2(bpy)]Cl⋅1.5MeOH (2⋅1.5MeOH). The structures of the complexes were determined by single-crystal X-ray crystallography. The CoIIIions are six-coordinate, surrounded by three bidentate chelating ligands, that is, two pao-and one phen or bpy. The deprotonated oxygen atom of the pao-ligand remains uncoordinated and participates in hydrogen bonding with the solvate molecules. IR data of the complexes are discussed in terms of the nature of bonding and the known structures.

1995 ◽  
Vol 73 (7) ◽  
pp. 1126-1134 ◽  
Author(s):  
Michel Dionne ◽  
Shoukang Hao ◽  
Sandro Gambarotta

The synthesis and characterization of a new series of mono-, di-, and trinuclear Cr(II) borohydride compounds is described. The reaction of CrCl2(TMEDA) with two equivalents of NaBH4 afforded the thermally unstable (TMEDA)Cr(BH4)2 (1), which was converted by treatment with pyridine into the octahedral monomeric (Py)4Cr(BH4)2 (2). The reaction proceeds via formation of an intermediate trinuclear complex {[(TMEDA)(Py)Cr(η2-BH4)]2[(Py)2Cr(η2-BH4)2]}(µ,η1-BH4)2 (3), which was isolated and characterized by X-ray crystallography. Reaction of 1 and 2 with both CO2 and RN=C=NR (R = Cy, iPr) afforded hydride insertion and formation of the corresponding diamagnetic lantern-type Cr(II) formate (HCO2)4Cr2Py2 (4) and formamidinate compounds [RNC(H)NR]2Cr2(µ-BH)4 (R = Cy (5a), iPr (5b)), respectively, with supershort Cr—Cr quadruple bonds. The structures of 1, 2, 3, and 5b were elucidated by X-ray analysis. Crystal data are as follows. 1: C6H24N2B2Cr, monoclinic, Cc, a = 8.517(2) Å, b = 15.921(5) Å, c = 9.624(2) Å, β = 115.59(1)°, Z = 4, R = 0.022, Rw = 0.029; 2: C28H44N4B2O2Cr, monoclinic, P21/n, a = 12.021(1) Å, b = 15.555(1) Å, c = 15.723(1) Å, β = 90.13(2)°, Z = 4, R = 0.074, Rw = 0.086; 3: C32H76N8B6Cr3, monoclinic, P21/n, a = 8.515(1) Å, b = 14.525(1) Å, c = 18.286(2) Å, β = 91.38(1)°, Z = 2, R = 0.051, Rw = 0.060; 5b: C21H49N6BCr2, monoclinic, C2/c, a = 17.000(1) Å, b = 9.033(1) Å, c = 19.160(1) Å, β = 105.579(9)°, Z = 4, R = 0.069, Rw = 0.078. Keywords: divalent chromium, borohydride, Cr—Cr quadruple bond.


2002 ◽  
Vol 80 (11) ◽  
pp. 1524-1529 ◽  
Author(s):  
Tianle Zhang ◽  
Warren E Piers ◽  
Masood Parvez

Reaction of McConville's chelating amido titanium complex [(Ar)NCH2CH2CH2N(Ar)]Ti(CH3)2 (Ar = 2,6-i-Pr2C6H3) with either elemental Se or the tellurium atom source Te=PBu3 resulted in the formation of bis-µ-chalcogenido dimers [(Ar)NCH2CH2CH2N(Ar)]2Ti(µ-E)2 (E = Se, 2; Te, 3) with concommitant loss of EMe2. The dimers 2 and 3 were characterized spectroscopically and via X-ray crystallography. The two compounds are isostructural in the solid state. The tellurido dimer 3 may also be synthesized by reduction of the diamido dichloride [(Ar)NCH2CH2CH2N(Ar)]2TiCl2 with Na–Hg amalgam followed by treatment with Te=PBu3. This dimer is unreactive toward further Te=PBu3 or stannanes such as HSnBu3. Unlike decamethyltitanocene derivatives, the diamido complex is not an effective catalyst precursor for the heterohydrodecoupling of Te=PBu3 and HSnBu3.Key words: diamido titanium complexes, selenides, tellurides.


2010 ◽  
Vol 6 ◽  
pp. 709-712 ◽  
Author(s):  
Julien Monot ◽  
Louis Fensterbank ◽  
Max Malacria ◽  
Emmanuel Lacôte ◽  
Steven J Geib ◽  
...  

In situ formation of two cyclic (alkyl) (amino) carbenes (CAACs) followed by addition of BF3•Et2O provided the first two examples of CAAC–BF3 complexes: 1-(2,6-diisopropylphenyl)-3,5,5-trimethyl-3-phenylpyrrolidin-2-ylidene trifluoroborane, and 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]decan-1-ylidene trifluoroborane. These CAAC–BF3 complexes are robust compounds that are stable to ambient laboratory conditions and silica gel chromatography. They were characterized by spectroscopy and X-ray crystallography. In contrast, a CAAC complex with borane (BH3) was readily formed in situ according to 1H and 11B NMR analysis, but did not survive the workup conditions. These results set the stage for further studies of the chemistry of CAAC boranes.


2013 ◽  
Vol 9 ◽  
pp. 2202-2215 ◽  
Author(s):  
Catalin V Maftei ◽  
Elena Fodor ◽  
Peter G Jones ◽  
M Heiko Franz ◽  
Gerhard Kelter ◽  
...  

Taking into consideration the biological activity of the only natural products containing a 1,2,4-oxadiazole ring in their structure (quisqualic acid and phidianidines A and B), the natural product analogs 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)pyrrolidine-2,5-dione (4) and 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)-1H-pyrrole-2,5-dione (7) were synthesized starting from 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1) in two steps by isolating the intermediates 4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4-oxobutanoic acid (3) and (Z)-4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4-oxobut-2-enoic acid (6). The two natural product analogs 4 and 7 were then tested for antitumor activity toward a panel of 11 cell lines in vitro by using a monolayer cell-survival and proliferation assay. Compound 7 was the most potent and exhibited a mean IC50 value of approximately 9.4 µM. Aniline 1 was synthesized by two routes in one-pot reactions starting from tert-butylamidoxime and 4-aminobenzoic acid or 4-nitrobenzonitrile. The structures of compounds 1, 2, 4, 5 and 6 were confirmed by X-ray crystallography.


1993 ◽  
Vol 71 (11) ◽  
pp. 1805-1809 ◽  
Author(s):  
Liqin Chen ◽  
Laurence K. Thompson ◽  
John N. Bridson ◽  
Jide Xu ◽  
Shisheng Ni ◽  
...  

The synthesis and characterization of a new 14-membered tetraazamacrocyclic ligand 5,12-dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradecane-4,11-diacetic acid (H2L1) is reported. Cobalt(III), nickel(II), and copper(II) complexes with this ligand were prepared and characterized by infrared, electronic, and electron spin resonance (esr) spectra and in one case by X-ray crystallography. The complex CuL1•2CH3CH2OH (3) crystallized in the triclinic system, space group[Formula: see text], with a = 8.440(2), b = 13.445(2), c = 7.523(1) Å, α = 99.30(1), β = 106.57(1), γ = 87.00(1)° and Z = 2 (R = 0.027, Rw = 0.028 for 2618 reflections). The complex shows a distorted trans-octahedral geometry with four amino nitrogens in a plane and two apical carboxylate oxygen donors.


2021 ◽  
Author(s):  
Marion Till ◽  
John A. Kelly ◽  
Christoph G. P. Ziegler ◽  
Robert Wolf ◽  
Tianao Guo ◽  
...  

Divalent iron complexes trans-[FeBr2(BINC)2], [Cp*FeCl(BINC)] (Cp* = Me5C5) and [FeBr2(CNAr3NC)2] with chelat-ing bis(isonitrile) ligands BINC (bis(2-isocyanophenyl)phenylphosphonate) and CNAr3NC (2,2’’-diisocyano-3,5,3’’,5’’tetramethyl-1,1’:3’,1’’-terphenyl) have been prepared and characterized. Their subsequent reduction yields di- and trinuclear compounds [Fe3(BINC)6], [Cp*Fe(BINC)]2, [Fe(CNAr3NC)2]2 and [K(Et2O)]2[Fe(CNAr3NC)2]2. The molecular structures of all new species were determined by X-ray crystallography. The molecular structures are compared to related iron carbonyl complexes. The complexes were further characterized by NMR and IR spectroscopy, and the electrochemical properties of selected compounds were analyzed by UV-Vis-NIR spectroelectrochemistry. <br>


2004 ◽  
Vol 59 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Andreas Sofetis ◽  
Giannis S. Papaefstathiou ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Theodoros F. Zafiropoulos

The reaction of Ga2(SO4)3·18H2O and excess 2,2′:6′,2″-terpyridine (terpy) in MeOH / H2O leads to [Ga(OH)(SO4)(terpy)(H2O)]·H2O (1·H2O] in good yield. The structure of the complex has been determined by single-crystal X-ray crystallography. The GaIII atom in 1·H2O is 6-coordinate and ligation is provided by one terdentate terpy molecule, one monodentate sulfate, one terminal hydroxide and one terminal H2O molecule; the coodination polyhedron about the metal is described as a distorted octahedron. There is an extensive hydrogen-bonding network in the crystal structure which generates corrugated layers parallel to bc. The new complex was characterized by IR and 1H NMR spectroscopy. The spectroscopic data are discussed in terms of the nature of bonding


Sign in / Sign up

Export Citation Format

Share Document