Preparation, Crystal Structure and Spectroscopic Characterization of [Ga(OH)(SO4)(terpy)(H2O)] · H2O (terpy=2,2’:6’,2-Terpyridine): The First Characterized Gallium(III) Sulfato Complex

2004 ◽  
Vol 59 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Andreas Sofetis ◽  
Giannis S. Papaefstathiou ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Theodoros F. Zafiropoulos

The reaction of Ga2(SO4)3·18H2O and excess 2,2′:6′,2″-terpyridine (terpy) in MeOH / H2O leads to [Ga(OH)(SO4)(terpy)(H2O)]·H2O (1·H2O] in good yield. The structure of the complex has been determined by single-crystal X-ray crystallography. The GaIII atom in 1·H2O is 6-coordinate and ligation is provided by one terdentate terpy molecule, one monodentate sulfate, one terminal hydroxide and one terminal H2O molecule; the coodination polyhedron about the metal is described as a distorted octahedron. There is an extensive hydrogen-bonding network in the crystal structure which generates corrugated layers parallel to bc. The new complex was characterized by IR and 1H NMR spectroscopy. The spectroscopic data are discussed in terms of the nature of bonding

2005 ◽  
Vol 60 (3) ◽  
pp. 289-293 ◽  
Author(s):  
Ali Ramazani ◽  
Ali Morsali ◽  
Leila Dolatyari ◽  
Bijan Ganjeie

The mercury(II) complexes of 2,2′-bipyridine (bpy), [Hg(bpy)(NO2)2], [Hg(bpy)(NO2) (CH3COO)], and [Hg(bpy)(NO2)(NCS)] have been synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The structure of [Hg(bpy)(NO2)2] has been confirmed by X-ray crystallography. The complex is a monomer and the Hg atom has an unsymmetrical six-coordinate geometry, formed by two nitrogen atoms of the bpy ligand and four oxygen atoms of the two nitrite anions. There is a short intermolecular π-π stacking interaction between parallel aromatic rings


2001 ◽  
Vol 56 (2) ◽  
pp. 122-128 ◽  
Author(s):  
Athanassios K. Boudalis ◽  
Vassilios Nastopoulos ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Spyros P. Perlepes

Abstract The reaction of Y(NO3)3 · 5H2O and 2,2':6',2"-terpyridine (terpy) in MeCN leads to [Y(N03 )3(terpy)(H2O )] (1) and [Y(N03 )3(terpy)(H2O )] terpy-3MeCN (2) in good yields depending on the isolation conditions. The structures of both complexes were determined by single-crystal X-ray crystallography. The YIII atom in 1 is 9-coordinate and ligation is provided by one terdentate terpy molecule, two chelating nitrates, one monodentate nitrate and one terminal H2O molecule; the coordination polyhedron about the metal may be viewed as a tricapped trigonal prism. The YIII atom in 2 is 10-coordinate and its coordination sphere consists of three nitrogen atoms from the terdentate terpy, six oxygen atoms from the three chelating nitrates (one of them being “anisobidentate”) and one oxygen atom from a terminal H2O molecule; the polyhedron about the metal may be viewed as a distorted sphenocorona. The interstitial terpy is strongly hydrogen-bonded to the O atom of the coordinated H2O molecule to form [Y(NO3 )3(terpy)(H20)] ··· terpy pairs. The new complexes were characterized by IR and 1H NMR spectroscopies. The YIII/NO3-/terpy chemistry is compared to the already well-developed LnIII/NO3-/terpy chemistry (Ln = lanthanide).


2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0272
Author(s):  
Ahmed Shukkur

       Our work included a synthesis of three new imine derivatives—1,3-thiazinan-4-one, 1,3-oxazinan-6-one and 1,3-oxazepin-4,7-dione—which contained an adamantyl fragment. These were produced via the condensation of the Schiff`s base (E)-N-(adamantan-1-yl)-1-(3-aryl)methanimine with 3-mercaptopropanoic acid; 3-chloropropanoic acid; and maleic, citraconic anhydride, respectively. These new imines were prepared via the condensation of adamantan-1-ylamine and 3-nitro-, 3-bromobenzaldehyde in n-BuOH. We obtained a good yield of products. FTIR, 1H NMR spectroscopy and C.H.N.S analysis were used to diagnostic the products. The molecular structure of (E)-N-(adamantan-1-yl)-1-(3-nitrophenyl)methanimine was confirmed by X-ray crystallography analysis.  


2018 ◽  
Vol 96 (6) ◽  
pp. 526-533 ◽  
Author(s):  
Khatera Hazin ◽  
Derek P. Gates

Treating PCl5 with C12H8Li2, generated from either C12H10, C12H8Br2, or C12H8I2, affords three products in different ratios depending on the source of the lithiated biphenyl. Hellwinkel’s salt [P(C12H8)2][P(C12H8)3] ([1][2]) and another product [P(C12H8)(C24H16)][P(C12H8)3] ([1′][2]) were obtained by reacting PCl5 with 2,2′-dilithiobiphenyl [Route A: 2.5 equiv.; obtained from biphenyl, n-BuLi, and TMEDA; Route B: 3.0 equiv.; obtained from 2,2′-diiodobiphenyl and n-BuLi; Route C: 4.0 equiv.; obtained from 2,2′-dibromobiphenyl and n-BuLi]. The synthesis, isolation, and characterization of the chiral spiro-compound [1′][2] and the characterization of the pentavalent phosphorane [P(C12H8)2(C12H9)] (3) are reported. The complex [1′][2] was characterized by 31P{1H} NMR spectroscopy, X-ray crystallography, and mass spectrometry. The pentavalent compound (3) was characterized by 31P{1H} NMR spectroscopy and X-ray crystallography.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


2005 ◽  
Vol 60 (10) ◽  
pp. 1049-1053 ◽  
Author(s):  
Zeanab Talaei ◽  
Ali Morsali ◽  
Ali R. Mahjoub

Two new ZnII(phen)2 complexes with trichloroacetate and acetate anions, [Zn(phen)2(CCl3COO)- (H2O)](ClO4) and [Zn(phen)2(CH3COO)](ClO4), have been synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. The single crystal X-ray data of these compounds show the Zn atoms to have six-coordinate geometry. From IR spectra and X-ray crystallography it is established that the coordination of the COO− group is different for trichloroacetate and acetate. The former acts as a monodentate whereas the latter acts as a bidentate ligand.


1990 ◽  
Vol 45 (10) ◽  
pp. 1416-1424 ◽  
Author(s):  
W. Preetz ◽  
P. Hollmann ◽  
G. Thiele ◽  
H. Hillebrecht

The triply bonded octahalogenodiosmate(III) anions [Os2X8]2-, previously known with X = Cl, Br, have now been extended to include the iodide with two staggered OsI4 units. This compound was prepared by treating [Os2Cl8]2- with Nal at room temperature in acetone solution. The structure determination by X-ray diffractometry on single crystals of (PPN)2[Os2I8] · 2 CH2Cl2, reveals crystallization in the monoclinic system, space group P21/c with Z = 4. The Os-Os triple bond is with 2.212(1) Å the longest within the three octahalogenodiosmates(III). The Raman spectra show ν(OsOs) at 285, [Os2Cl8]2-; at 287, [Os2Br8]2- and for the iodo compound at 270.1 cm-1 with up to three overtones. The spectroscopic constants are calculated to be ω1 = 270.9 cm-1; X11 = -0.50 cm-1. The 10 Κ UV-VIS spectra of solid [(n-C4H9)4N]2[Os2X8] exhibit δ-π* transitions with maxima at 723, 690 and 643 nm, superimposed by vibrational fine structures with long progressions of 195, 211 and 183 cm-1 for X = Cl, Br, I, respectively. Oxidation of [Os2X8]2-, X = Cl, Br with the corresponding halogen leads to the cleavage of the Os-Os bond, and the dekahalogenodiosmates(IV), [Os2X10]2-, are formed


1984 ◽  
Vol 62 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Sara Ariel ◽  
David Dolphin ◽  
George Domazetis ◽  
Brian R. James ◽  
Tak W. Leung ◽  
...  

The ruthenium(II) porphyrin complex Ru(OEP)(PPh3)2 (OEP = the dianion of octaethylporphyrin) has been prepared from Ru(OEP)(CO)EtOH, and the X-ray crystal structure determined; as expected, the six-coordinate ruthenium is situated in the porphyrin plane and has two axial phosphine ligands. Synthesized also from the carbonyl(ethanol) precursors were the corresponding tris(p-methoxyphenyl)phosphine complex, and the Ru(TPP)L2 (TPP = the dianion of tetraphenylporphyrin, L = PPh3, P(p-CH3OC6H4)3, P″Bu3) and Ru(TPP)(CO)PPh3 complexes. Optical and 1H nmr data are presented for the complexes in solution. In some cases dissociation of a phosphine ligand to generate five-coordinate species occurs and this has been studied quantitatively in toluene at 20 °C for the Ru(OEP)L2 and Ru(TPP)L2 systems.


2016 ◽  
Vol 71 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Oscar E. Piro ◽  
Gustavo A. Echeverría ◽  
Beatriz S. Parajón-Costa ◽  
Enrique J. Baran

AbstractMagnesium acesulfamate, Mg(C4H4NO4S)2·6H2O, was prepared by the reaction of acesulfamic acid and magnesium carbonate in aqueous solution, and characterized by elemental analysis. Its crystal structure was determined by single crystal X-ray diffraction methods. The substance crystallizes in the triclinic space group P1̅ with one molecule per unit cell. The FTIR spectrum of the compound was also recorded and is briefly discussed. Some comparisons with other simple acesulfamate and saccharinate salts are also made.


CrystEngComm ◽  
2018 ◽  
Vol 20 (13) ◽  
pp. 1783-1796 ◽  
Author(s):  
Bahram Ghanbari ◽  
Leila Shahhoseini ◽  
Agata Owczarzak ◽  
Maciej Kubicki ◽  
Reza Kia ◽  
...  

A new series of coordination polymers capable of adsorbing anions have been synthesized by employing a dipyridine substituted diazacrown macrocycle as linker.


Sign in / Sign up

Export Citation Format

Share Document