scholarly journals Boundedness and Stability for Discrete-Time Delayed Neural Network with Complex-Valued Linear Threshold Neurons

2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Chengjun Duan ◽  
Qiankun Song

The discrete-time delayed neural network with complex-valued linear threshold neurons is considered. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality technique and analysis method, several new delay-dependent criteria for checking the boundedness and global exponential stability are established. Illustrated examples are also given to show the effectiveness and less conservatism of the proposed criteria.

2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Qiankun Song ◽  
Jinde Cao

The problems on global dissipativity and global exponential dissipativity are investigated for uncertain discrete-time neural networks with time-varying delays and general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality technique, several new delay-dependent criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in linear matrix inequality (LMI), which can be checked numerically using the effective LMI toolbox in MATLAB. Illustrated examples are given to show the effectiveness of the proposed criteria. It is noteworthy that because neither model transformation nor free-weighting matrices are employed to deal with cross terms in the derivation of the dissipativity criteria, the obtained results are less conservative and more computationally efficient.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ting Lei ◽  
Qiankun Song ◽  
Yurong Liu

The state estimation problem is investigated for discrete-time Takagi-Sugeno fuzzy systems with time-varying delays. By constructing appropriate Lyapunov-Krasovskii functionals and employing matrix inequality technique, a delay-dependent linear matrix inequalities (LMIs) criterion is developed to estimate the systems state with some observed output measurements such that the error-state system is globally asymptotically stable. An example with simulations is given to show the effectiveness of the proposed criterion.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ting Lei ◽  
Qiankun Song ◽  
Zhenjiang Zhao

The passivity for discrete-time stochastic T-S fuzzy systems with time-varying delays is investigated. By constructing appropriate Lyapunov-Krasovskii functionals and employing stochastic analysis method and matrix inequality technique, a delay-dependent criterion to ensure the passivity for the considered T-S fuzzy systems is established in terms of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. An example is given to show the effectiveness of the obtained result.


Author(s):  
Venkatesh Modala ◽  
Sourav Patra ◽  
Goshaidas Ray

Abstract This paper presents the design of an observer-based stabilizing controller for linear discrete-time systems subject to interval time-varying state-delay. In this work, the problem has been formulated in convex optimization framework by constructing a new Lyapunov-Krasovskii (LK) functional to derive a delay-dependent stabilization criteria. The summation inequality and the extended reciprocally convex inequality are exploited to obtain a less conservative delay upper bound in linear matrix inequality (LMI) framework. The derived stability conditions are delay-dependent and thus, ensure global asymptotic stability in presence of any time delay less than the obtained delay upper bound. Numerical examples are included to demonstrate the usefulness of the developed results.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

The purpose of this paper is to investigate a delay-dependent robust synchronization analysis for coupled stochastic discrete-time neural networks with interval time-varying delays in networks coupling, a time delay in leakage term, and parameter uncertainties. Based on the Lyapunov method, a new delay-dependent criterion for the synchronization of the networks is derived in terms of linear matrix inequalities (LMIs) by constructing a suitable Lyapunov-Krasovskii’s functional and utilizing Finsler’s lemma without free-weighting matrices. Two numerical examples are given to illustrate the effectiveness of the proposed methods.


2014 ◽  
Vol 69 (1-2) ◽  
pp. 70-80 ◽  
Author(s):  
Mathiyalagan Kalidass ◽  
Hongye Su ◽  
Sakthivel Rathinasamy

This paper presents a robust analysis approach to stochastic stability of the uncertain Markovian jumping discrete-time neural networks (MJDNNs) with time delay in the leakage term. By choosing an appropriate Lyapunov functional and using free weighting matrix technique, a set of delay dependent stability criteria are derived. The stability results are delay dependent, which depend on not only the upper bounds of time delays but also their lower bounds. The obtained stability criteria are established in terms of linear matrix inequalities (LMIs) which can be effectively solved by some standard numerical packages. Finally, some illustrative numerical examples with simulation results are provided to demonstrate applicability of the obtained results. It is shown that even if there is no leakage delay, the obtained results are less restrictive than in some recent works.


Sign in / Sign up

Export Citation Format

Share Document