scholarly journals Cooperative Signaling with Soft Information Combining

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Rui Lin ◽  
Philippa A. Martin ◽  
Desmond P. Taylor

We propose a Decode-and-Forward (DF) scheme using distributed Turbo code (DTC) for a three-node (source, relay, and destination) wireless cooperative communication system. The relay decodes, then interleaves, and reencodes the decoded data. It then forwards the reencoded packet and its instantaneous receive SNR to the destination. The performances using both ideal and quantized SNR are studied. The destination uses a modified metric within a Turbo decoding algorithm to scale the soft information calculated for the relay code. The proposed scheme is simple to implement and performs well.

Author(s):  
Manav R. Bhatnagar ◽  
Are Hjørungnes

In this chapter, we discuss single and double-differential coding for a two-user cooperative communication system. The single-differential coding is important for the cooperative systems as the data at the destination/relaying node can be decoded without knowing the channel gains. The double-differential modulation is useful as it avoids the need of estimating the channel and carrier offsets for the decoding of the data. We explain single-differential coding for a cooperative system with one relay utilizing orthogonal transmissions with respect to the source. Next, we explain two single-differential relaying strategies: active user strategy (AUS) and passive users relaying strategy (PURS), which could be used by the base-station to transmit data of two users over downlink channels in the two-user cooperative communication network with decode-and-forward protocol. The AUS and PURS follow an improved time schedule in order to increase the data rate. A probability of error based approach is also discussed, which can be used to reduce the erroneous relaying of data by the regenerative relay. In addition, we also discuss how to implement double-differential (DD) modulation for decode-and-forward and amplify-and-forward based cooperative communication system with single source-destination pair and a single relay. The DD based systems work very well in the presence of random carrier offsets without any channel and carrier offset knowledge at the receivers, where the single differential cooperative scheme breaks down. It is further shown that optimized power distributions can be used to improve the performance of the DD system.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2102
Author(s):  
Rabia Khan ◽  
Dushantha Nalin K. Jayakody

The technological breakthrough in the form of Internet of Things (IoT), Big data and connected world is increasing the demand of better spectrum utilization. Half-Duplex (HD) transmission is mostly used in the earlier communication systems. The high transmission demand requires the better utilization of the existing spectrum. There are several possible ways to overcome the problem of better spectrum usage. In-Band Full Duplex (IBFD) is one of the techniques that can double the Spectral Efficiency (SE) in a Beyond 5G (B5G) communication system. In this paper, our aim is to use the spectral efficient IBFD scheme to improve the security of the system with minimum interference. The interference can be reduced by the addition of orthogonality between the transmitted and received signal of a relay. A component-forward scheme is proposed in this paper to create such orthogonality. For achieving the desired aim, IBFD is used with Device-to-Device (D2D), Artificial Noise (AN), Modulation based orthogonalization, Radio Frequency Energy Harvesting (RFEH) and proposed Full-Duplex Component Forward (FD-CF) algorithm for multiple relays. We also use non-linear harvested power as one of the sources to reuse the exiting power for evaluating the system performance. The derivation of Secrecy Outage Probability (SOP) and throughput is derived in this paper for the FD-CF cooperative communication and is explored with and without non-linear RFEH. The simulation results show the comparison between the component-forward and decode-and-forward communication with one or more relays.


2013 ◽  
Vol 32 (8) ◽  
pp. 2113-2115
Author(s):  
Zheng LI ◽  
Chun-lin SONG ◽  
Yun-jie ZHAO ◽  
Zhu-jia WU

Sign in / Sign up

Export Citation Format

Share Document