scholarly journals Evaluation of Excess Thermodynamic Parameters in a Binary Liquid Mixture (Cyclohexane +O-Xylene) at Different Temperatures

2010 ◽  
Vol 7 (3) ◽  
pp. 927-934 ◽  
Author(s):  
K. Narendra ◽  
P. Narayanamurthy ◽  
CH. Srinivasu

The ultrasonic velocity, density and viscosity in binary liquid mixture cyclohexane witho-xylene have been determined at different temperatures from 303.15 to 318.15 K over the whole composition range. The data have been utilized to estimate the excess adiabatic compressibility (βE), excess volumes (VE), excess intermolecular free length (LfE), excess internal pressure (πE) and excess enthalpy (HE) at the above temperatures. The excess values have been found to be useful in estimating the strength of the interactions in the liquid mixtures. Analysis of these parameters indicates that there are weak interactions among the components of the binary mixtures.

Author(s):  
B. Sudhamsa ◽  
M. Sarath Babu ◽  
K. Narendra

The speed of sound and density in binary liquid mixture of diethyl carbonate + benzonitrile, + benzaldehyde have been determined at temperatures 298.15, 308.15 and 318.15 K over the whole composition range. The data have been utilized to estimate the excess adiabatic compressibility (βE), excess intermolecular free length (LfE), excess speed of sound (uE) at the above temperatures. The excess values have been found to be useful in estimating the strength of the interactions in the liquid mixtures.


Author(s):  
C.H. Srinivasu ◽  
K. Anil Kumar ◽  
S.K. Fakruddin ◽  
K. Narendra ◽  
T. Anjaneyulu

The values of ultrasonic velocity (u), density (ρ), and viscosity (η) have been measured experimentally in the binary liquid mixture containing 1-butanol and hexane over the entire range of composition at different temperatures 313.15 K, 318.15 K and 323.15 K. This experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), free length (Lf), molar volume (Vm) and acoustic impedance(z). The results have been qualitatively used to explain the molecular interactions between the components of the liquid mixture.


Author(s):  
D. Chinnarao ◽  
M. Sri Latha ◽  
K. Raja ◽  
Ch.V. Padmarao

Density, speed of sound and viscosity have been measured for binary liquid mixture containing Ethyloleate+o-toludine over the entire composition range at temperatures 303.15, 308.15, 313.15 and 318.15 K and at atmospheric pressure. By using these values various parameters like adiabatic compressibility (βad), free volume (Vf), intermolecular free length (Lf), internal pressure (π) and their excess values have been calculated. The intermolecular interactions and structural effects are analyzed on the basis of the measured and derived properties.


Author(s):  
Y. Sreedevi ◽  
Ch. Srinivasu ◽  
Sk. Fakruddin ◽  
K. Narendra ◽  
B.R. Venkateswara Rao ◽  
...  

Ultrasonic velocity is measured experimentally at 3MHz frequency in the binary liquid mixture containing aniline and anisole at different temperatures over the entire composition range and theoretical values of ultrasonic velocity have been evaluated by using Nomoto’s relation, Impedance relation, Van Dael ideal mixture relation. These theoretical values are compared with the experimental values. A good agreement has been found between experimental and theoretical ultrasonic velocities.


Author(s):  
S.L. Dahire ◽  
Y.C. Morey ◽  
P.S. Agrawal

The present study reports densities (ρ), viscosities (η) and ultrasonic speeds (U) of pure dioxane (DOX), anisole (ANS), toluene (TOL) and ethylbenzene (ETB) and their binary liquid mixtures over the entire composition range at 293, 298, 303, 308 and 313 K. From the experimental data excess molar volume (VmE), excess intermolecular free length (LfE), excess adiabatic compressibility (βE) and excess acoustic impedance (ZE) have been computed. The excess values were correlated using Redlitch-Kister polynomial equation to obtain their coefficients and standard deviations (σ). With increase in temperature, the binary mixture of DOX+ANS shows larger deviations in βE, LfE and smaller deviations in ZE, VmE. These results suggest that ANS has strong molecular interactions with DOX than ETB and TOL.


1989 ◽  
Vol 67 (3) ◽  
pp. 437-441 ◽  
Author(s):  
J. D. Pandey ◽  
R. D. Rai ◽  
R. K. Shukla

Various statistical and empirical theories of ultrasonic velocity have been applied to a binary liquid mixture (benzene + nitrobenzene) at elevated pressures and their validity have been tested. A pressure-dependent study of ultrasonic velocities has been made at three different temperatures (293.15, 303.15, and 313.15 K). The agreement between the theory and experiment is found to be satisfactory. Keywords: ultrasonic velocity, benzene + nitrobenzene, pressure dependent, theoretical evaluation, binary mixtures at elevated pressures.


This note attempts to revise and extend the formulae proposed by Guggenheim (1935) in his theory of a special (hypothetical) type of liquid mixture which, in the account of Guggenheim’s paper given by Fowler (1936), is called strictly regular. According to the definitions in these sources a binary liquid mixture is said to be strictly regular if (i) there is no volume change on mixing, whatever the relative amounts of the two components, (ii) it possesses a definite co-ordination number, г say, so that each molecule, of either kind, in the liquid has precisely г (nearest) neighbours.


Sign in / Sign up

Export Citation Format

Share Document