Study of Molecular Interactions in Binary Liquid Mixtures Containing Ethyl (Z)-Octadec-9-Enoate and o-Toludine

Author(s):  
D. Chinnarao ◽  
M. Sri Latha ◽  
K. Raja ◽  
Ch.V. Padmarao

Density, speed of sound and viscosity have been measured for binary liquid mixture containing Ethyloleate+o-toludine over the entire composition range at temperatures 303.15, 308.15, 313.15 and 318.15 K and at atmospheric pressure. By using these values various parameters like adiabatic compressibility (βad), free volume (Vf), intermolecular free length (Lf), internal pressure (π) and their excess values have been calculated. The intermolecular interactions and structural effects are analyzed on the basis of the measured and derived properties.

Author(s):  
B. Sudhamsa ◽  
M. Sarath Babu ◽  
K. Narendra

The speed of sound and density in binary liquid mixture of diethyl carbonate + benzonitrile, + benzaldehyde have been determined at temperatures 298.15, 308.15 and 318.15 K over the whole composition range. The data have been utilized to estimate the excess adiabatic compressibility (βE), excess intermolecular free length (LfE), excess speed of sound (uE) at the above temperatures. The excess values have been found to be useful in estimating the strength of the interactions in the liquid mixtures.


2010 ◽  
Vol 7 (3) ◽  
pp. 927-934 ◽  
Author(s):  
K. Narendra ◽  
P. Narayanamurthy ◽  
CH. Srinivasu

The ultrasonic velocity, density and viscosity in binary liquid mixture cyclohexane witho-xylene have been determined at different temperatures from 303.15 to 318.15 K over the whole composition range. The data have been utilized to estimate the excess adiabatic compressibility (βE), excess volumes (VE), excess intermolecular free length (LfE), excess internal pressure (πE) and excess enthalpy (HE) at the above temperatures. The excess values have been found to be useful in estimating the strength of the interactions in the liquid mixtures. Analysis of these parameters indicates that there are weak interactions among the components of the binary mixtures.


Ultrasonic speed, density and viscosity of binary liquid mixtures of aqueous ammonium per sulphate with other sulphate solutions at 303.15 K have been measured. From these experimental data, the adiabatic compressibility, intermolecular free length, internal pressure, acoustic impedance, relaxation time, molar volume, classical absorption coefficient and surface tension have been computed. The excess viscosity, excess compressibility, excess intermolecular free length, excess acoustic impedance and excess molar volume values are evaluated to find the nature and the extent of the interactions between the constituent molecules of the liquid mixture systems


Author(s):  
G. Pavan Kumar ◽  
Ch. Praveen Babu ◽  
K. Samatha

Ultrasonic velocity, density and viscosity of the binary liquid mixtures of P-Chlorotoluene with p-xylene over the whole composition range at 303.15, 308.15, 313.15 and 315.15 K at frequency 2 MHz have been measured. Acoustical parameters such as adiabatic compressibility, intermolecular free length, impedance, molar volume, internal pressure, free volume, Rao constant and Wada constant. The acoustical parameters can be used to assess the strength of induced dipole-dipole interactions in this system studied.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bhavi Patel ◽  
Bhavya Salvi ◽  
Vivekanand Mishra ◽  
Ritesh Yadav

Background: The Binary mixtures of the isopropanol/isobutanol/isoamylalcohol with equimolar mixture of ethanol and formamide consists of different ultrasonic properties have been studied at room temperature at a fixed frequency of 2 MHz. The ultrasonic related physical parameters like velocity (U), density (ρ), adiabatic compressibility (βad), intermolecular free length (Lf) ,acoustic impedance (Z) etc. have been studied. The theoretical evaluation of ultrasonic velocity in liquid mixtures offers a transparent method for the study of the nature of molecular interactions in the mixtures besides verifying the applicability of different theories such as Nomoto’s, Van Dael and Vangeel’s, Impedance Dependence relation, Junjie’s relation, Rao’s specific sound velocity relation and Jacobson’s relations, Percentage deviations of theoretical ultrasonic velocities from experimental values in the mixtures of all liquid mixture and also calculated values of ultrasonic velocity from polynomials of for all the schemes with mole fraction (x) of isopropanol/isobutanol/isoamyl alcohol. Objective: The main focus of the present work was to prepare the structural changes associated with the liquid mixtures having weakly interacting components as well as strongly interacting components. The study of molecular is association in mixtures having exact information of thermodynamic mixing properties such as adiabatic compressibility, intermolecular free length, free volume, internal pressure and molar volume and has a great importance in theoretical and applied areas of research. The ultrasonic study has been a subject of active interest during the past many years. This branch of physical sciences has played a great role in deciding the interactions between the molecules of compounds under study not only that, but also it exists a potential tool in evaluating energy exchange between various degrees of freedom and nonlinear properties in binary liquid mixtures. Methods: The binary liquid mixtures were prepared by mixing the two components, by weight, using an electronic analytical balance (Reptech RA2012) accurate to within ±0.0001 g. The average uncertainty in mole fraction of binary mixtures was estimated to be ±0.0001. To avoid losses of solvent due to evaporation, mixtures were stored in specially designed ground-glass airtight ampoules and placed in a dark place to avoid photolytic effects. Results: These empirical fittings of data are described qualitatively and quantitatively using experimental speed data even in the specific interaction predominant region where non-ideal behavior of the mixture is observed. The values of sound velocities and percentage deviation, (after determining the co-efficient in the polynomial equations by applying least squares method) have been compiled in the tables respectively. Conclusion: The ultrasonic velocities and densities for all the three mixtures are measured and the values of are calculated from these values.The observed trends of and indicate the presence of weak interactions and the strength of these interactions follow the order EMM+IPA>EMM+IBA>EMM+IAA. Besides, the ultrasonic velocities gauge from different velocity theories are correlated with the experimentally measured ultrasonic velocities. Among these theories the Jacobson’s velocity equation gives good result between the experimental and theoretical ultrasonic velocity values for all the binary mixtures occupied.


Author(s):  
S.L. Dahire ◽  
Y.C. Morey ◽  
P.S. Agrawal

The present study reports densities (ρ), viscosities (η) and ultrasonic speeds (U) of pure dioxane (DOX), anisole (ANS), toluene (TOL) and ethylbenzene (ETB) and their binary liquid mixtures over the entire composition range at 293, 298, 303, 308 and 313 K. From the experimental data excess molar volume (VmE), excess intermolecular free length (LfE), excess adiabatic compressibility (βE) and excess acoustic impedance (ZE) have been computed. The excess values were correlated using Redlitch-Kister polynomial equation to obtain their coefficients and standard deviations (σ). With increase in temperature, the binary mixture of DOX+ANS shows larger deviations in βE, LfE and smaller deviations in ZE, VmE. These results suggest that ANS has strong molecular interactions with DOX than ETB and TOL.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Oana Ciocirlan ◽  
Olga Iulian

Excess molar volumes, VE, have been measured for binary liquid mixtures of dimethyl sulfoxide (DMSO) with xylenes (o- xylene, m- xylene and p-xylene) at 298.15 K and atmospheric pressure. The excess volumes values were found negative over the entire composition range for all the mixtures. The VE values increase in order: p-xylene[ m-xylene[ o-xylene. The Flory and Prigogine-Flory-Patterson (PFP) thermodynamic theories of solution have been used to analyze the VE data. The calculated VE values were found to be in good agreement with the experimental data.


Author(s):  
N. Santhi ◽  
P.L. Sabarathinam ◽  
G. Alamelumangai ◽  
J. Madhumitha ◽  
M. Emayavaramban

Ultrasonic velocity, viscosity and density of alcohol[s] in n-hexane have been measured at various temperatures in the range of 303.15 - 318.15K. From the experimental data, the acoustical parameters such as molar volume, adiabatic compressibility, intermolecular free length and their excess values have been computed and presented as functions of compositions. The deviations from ideality of the acoustical parameters are explained on the basis of molecular interactions between the components of the mixtures. The variations of these parameters with composition of the mixture suggest the strength of interactions in these mixtures.


2021 ◽  
Vol 33 (11) ◽  
pp. 2796-2802
Author(s):  
Mohammad Aftabuzzaman ◽  
Mohammad Monirul Islam ◽  
Nasiruddin ◽  
Farhana Rahman Rima ◽  
Mohammad Nazrul Islam ◽  
...  

Densities and sound velocities of the binary liquid mixtures of sulfolane + aniline, sulfolane + N,N-dimethylaniline, sulfolane + N,N-diethylaniline over the whole range of composition and their pure component were measured at temperatures (T = 303.15, 308.15, 313.15 K) and atmospheric pressure. A high precision vibrating-tube densitometer was used for the measurements. From the measured values, excess adiabatic compressibility (βs E), excess sound velocity (uE), excess internal pressure (Pi E) and deviation of surface tension (Δγ) were calculated for each of the systems. The excess properties and surface tension deviation were fitted to the Redlich-Kister equation. All these properties have been discussed in terms of molecular interactions.


2018 ◽  
Vol 232 (3) ◽  
pp. 393-408 ◽  
Author(s):  
Dinesh Kumar ◽  
Shashi Kant Sharma

AbstractDensities,ρand ultrasonic speeds, u of L-histidine (0.02–0.12 mol·kg−1) in water and 0.1 mol·kg−1aqueous citric acid solutions were measured over the temperature range (298.15–313.15) K with interval of 5 K at atmospheric pressure. From these experimental data apparent molar volume ΦV, limiting apparent molar volume ΦVOand the slopeSV, partial molar expansibilities ΦEO, Hepler’s constant, adiabatic compressibilityβ, transfer volume ΦV, trO, intermolecular free length (Lf), specific acoustic impedance (Z) and molar compressibility (W) were calculated. The results are interpreted in terms of solute–solute and solute–solvent interactions in these systems. It has also been observed that L-histidine act as structure maker in water and aqueous citric acid.


Sign in / Sign up

Export Citation Format

Share Document