scholarly journals Denaturation of proteins with beta-barrel topology induced by guanidine hydrochloride

2010 ◽  
Vol 24 (3-4) ◽  
pp. 367-373 ◽  
Author(s):  
Olesya V. Stepanenko ◽  
Irina M. Kuznetsova ◽  
Vladislav V. Verkhusha ◽  
Maria Staiano ◽  
Sabato D'Auria ◽  
...  

The stability of the representatives of two protein classes withβ-barrel topology: porcine odorant-binding protein (OBP) and a number of fluorescent proteins (FPs), was studied. It was shown that both of them are significantly more stable than globular α-helical andα/βproteins. At the same time the value of energy barrier between native and unfolded state for FPs exceeds that for OBP. It was found that the small guanidine hydrochloride concentrations induce local structural disturbances in proteins: changes in microenvironment of tryptophan residue in the case of odorant-binding protein and decrease in chromophore non-planarity in the case of green fluorescent protein.

2015 ◽  
Author(s):  
Anton Khmelinskii ◽  
Matthias Meurer ◽  
Chi-Ting Ho ◽  
Birgit Besenbeck ◽  
Julia Fueller ◽  
...  

Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates of both FPs. So far tFTs were constructed by combining different slower-maturing red fluorescent proteins (redFPs) with the same faster-maturing superfolder green fluorescent protein (sfGFP). Towards a comprehensive characterization of tFTs, we compare here tFTs composed of different faster-maturing greenFPs, while keeping the slower-maturing redFP constant (mCherry). Our results indicate that the greenFP maturation kinetics influences the time range of a tFT. Moreover, we observe that commonly used greenFPs can partially withstand proteasomal degradation due to the stability of the FP fold, which results in accumulation of tFT fragments in the cell. Depending on the order of FPs in the timer, incomplete proteasomal degradation either shifts the time range of the tFT towards slower time scales or precludes its use for measurements of protein turnover. We identify greenFPs that are efficiently degraded by the proteasome and provide simple guidelines for design of new tFTs.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1642 ◽  
Author(s):  
Olga V. Stepanenko ◽  
Denis O. Roginskii ◽  
Olesya V. Stepanenko ◽  
Irina M. Kuznetsova ◽  
Vladimir N. Uversky ◽  
...  

Contrary to the majority of the members of the lipocalin family, which are stable monomers with the specific OBP fold (a β-barrel consisting of a 8-stranded anti-parallel β-sheet followed by a short α-helical segment, a ninth β-strand, and a disordered C-terminal tail) and a conserved disulfide bond, bovine odorant-binding protein (bOBP) does not have such a disulfide bond and forms a domain-swapped dimer that involves crossing the α-helical region from each monomer over the β-barrel of the other monomer. Furthermore, although natural bOBP isolated from bovine tissues exists as a stable domain-swapped dimer, recombinant bOBP has decreased dimerization potential and therefore exists as a mixture of monomeric and dimeric variants. In this article, we investigated the effect model crowding agents of similar chemical nature but different molecular mass on conformational stability of the recombinant bOBP. These experiments were conducted in order to shed light on the potential influence of model crowded environment on the unfolding-refolding equilibrium. To this end, we looked at the influence of PEG-600, PEG-4000, and PEG-12000 in concentrations of 80, 150, and 300 mg/mL on the equilibrium unfolding and refolding transitions induced in the recombinant bOBP by guanidine hydrochloride. We are showing here that the effect of crowding agents on the structure and conformational stability of the recombinant bOBP depends on the size of the crowder, with the smaller crowding agents being more effective in the stabilization of the bOBP native dimeric state against the guanidine hydrochloride denaturing action. This effect of the crowding agents is concentration dependent, with the high concentrations of the agents being more effective.


2015 ◽  
Author(s):  
Olga V Stepanenko ◽  
Denis O Roginskii ◽  
Olesya V Stepanenko ◽  
Irina M Kuznetsova ◽  
Vladimir N Uversky ◽  
...  

Contrarily to the majority of the members of the lipocalin family, which are stable monomers with the specific OBP fold (a β-barrel consisting of a 8-stranded anti-parallel β-sheet followed by a short α-helical segment, a ninth β-strand, and a disordered C-terminal tail) and a conserved disulfide bond, bovine odorant-binding protein (bOBP) does not have such a disulfide bond and forms a domain-swapped dimer that involves crossing the α-helical region from each monomer over the β-barrel of the other monomer. Furthermore, although natural bOBP isolated from bovine tissues exists as a stable domain-swapped dimer, recombinant bOBP has decreased dimerization potential and therefore exists as a mixture of monomeric and dimeric variants. In this article, we investigated the effect model crowding agents of similar chemical nature but different molecular mass on conformational stability of the recombinant bOBP. These experiments were conducted in order shed light on the potential influence of model crowded environment on the unfolding-refolding equilibrium. To this end, we looked at the influence of PEG-600, PEG-4000, and PEG-12000 in concentrations of 80, 150, and 300 mg/mL on the equilibrium unfolding and refolding transitions induced in the recombinant bOBP by guanidine hydrochloride.


2015 ◽  
Author(s):  
Olga V Stepanenko ◽  
Denis O Roginskii ◽  
Olesya V Stepanenko ◽  
Irina M Kuznetsova ◽  
Vladimir N Uversky ◽  
...  

Contrarily to the majority of the members of the lipocalin family, which are stable monomers with the specific OBP fold (a β-barrel consisting of a 8-stranded anti-parallel β-sheet followed by a short α-helical segment, a ninth β-strand, and a disordered C-terminal tail) and a conserved disulfide bond, bovine odorant-binding protein (bOBP) does not have such a disulfide bond and forms a domain-swapped dimer that involves crossing the α-helical region from each monomer over the β-barrel of the other monomer. Furthermore, although natural bOBP isolated from bovine tissues exists as a stable domain-swapped dimer, recombinant bOBP has decreased dimerization potential and therefore exists as a mixture of monomeric and dimeric variants. In this article, we investigated the effect model crowding agents of similar chemical nature but different molecular mass on conformational stability of the recombinant bOBP. These experiments were conducted in order shed light on the potential influence of model crowded environment on the unfolding-refolding equilibrium. To this end, we looked at the influence of PEG-600, PEG-4000, and PEG-12000 in concentrations of 80, 150, and 300 mg/mL on the equilibrium unfolding and refolding transitions induced in the recombinant bOBP by guanidine hydrochloride.


2020 ◽  
Author(s):  
Caixia Zhou ◽  
Yujun Wan ◽  
Huipeng Yao ◽  
Hui Chen ◽  
Yirong Xiao ◽  
...  

Abstract Background Aspergillus oryzae is an ideal host for expressing heterologous and homologous genes. An efficient and stable transformation system is the key to the successful expression of the gene of interest in A. oryzae.Results To improve the expression efficiency of the gene of interest in A. oryzae, we constructed the uridine/uracil auxotrophic strains A. oryzae RIB40ΔpyrG by Ultraviolet (UV) mutagenesis of pyrG gene deletion which would be used as a host for further transformation. In addition, a novel and efficient expression vector pBC-hygro.4 was constructed, including the pyrG cassette gene, His-Tag, amyB promoter and terminator,and green fluorescent protein GFP marker. pBC-hygro.4 transformed A. oryzae RIB40ΔpyrG efficiently via the PEG-CaCl2-mediated transformation method, and the stability of pBC-hygro.4 was tested by detecting the expression of the GFP reporter gene. Through phenotyping and sequencing verification, we successfully obtained a uridine/uracil auxotrophic strains A. oryzae RIB40ΔpyrG. At the same time, the developed vectors are fully functional for heterologous expression of the GFP fluorescent proteins in the A. oryzae RIB40ΔpyrG.Conclusion Our work provides a new method that can be applied to other filamentous fungi to develop similar fungal transformation systems based on auxotrophic/nutritional markers for food-grade recombination applications.


2016 ◽  
Vol 27 (2) ◽  
pp. 360-370 ◽  
Author(s):  
Anton Khmelinskii ◽  
Matthias Meurer ◽  
Chi-Ting Ho ◽  
Birgit Besenbeck ◽  
Julia Füller ◽  
...  

Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates of both FPs. So far, tFTs have been constructed by combining slower-maturing red fluorescent proteins (redFPs) with the faster-maturing superfolder green fluorescent protein (sfGFP). Toward a comprehensive characterization of tFTs, we compare here tFTs composed of different faster-maturing green fluorescent proteins (greenFPs) while keeping the slower-maturing redFP constant (mCherry). Our results indicate that the greenFP maturation kinetics influences the time range of a tFT. Moreover, we observe that commonly used greenFPs can partially withstand proteasomal degradation due to the stability of the FP fold, which results in accumulation of tFT fragments in the cell. Depending on the order of FPs in the timer, incomplete proteasomal degradation either shifts the time range of the tFT toward slower time scales or precludes its use for measurements of protein turnover. We identify greenFPs that are efficiently degraded by the proteasome and provide simple guidelines for the design of new tFTs.


2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


1990 ◽  
Vol 265 (11) ◽  
pp. 6118-6125
Author(s):  
J Pevsner ◽  
V Hou ◽  
A M Snowman ◽  
S H Snyder

Author(s):  
Ran Wang ◽  
Yuan Hu ◽  
Peiling Wei ◽  
Cheng Qu ◽  
Chen Luo

Abstract Odorant binding proteins (OBPs) of insects play a critical role in chemical perceptions and choice of insect host plant. Bemisia tabaci is a notorious insect pest which can damage more than 600 plant species. In order to explore functions of OBPs in B. tabaci, here we investigated binding characteristics and function of odorant-binding protein 3 in B. tabaci (BtabOBP3). The results indicated that BtabOBP3 shows highly similar sequence with OBPs of other insects, including the typical signature motif of six cysteines. The recombinant BtabOBP3 protein was obtained, and the evaluation of binding affinities to tested volatiles of host plant was conducted, then the results indicated that β-ionone had significantly higher binding to BtabOBP3 among other tested plant volatiles. Furthermore, silencing of BtabOBP3 significantly altered choice behavior of B. tabaci to β-ionone. In conclusion, it has been demonstrated that BtabOBP3 exerts function as one carrier of β-ionone and the results could be contributed to reveal the mechanisms of choosing host plant in B. tabaci.


Sign in / Sign up

Export Citation Format

Share Document