scholarly journals Isometric and Closed-Range Composition Operators between Bloch-Type Spaces

2011 ◽  
Vol 2011 ◽  
pp. 1-15
Author(s):  
Nina Zorboska

We present an overview of the known results describing the isometric and closed-range composition operators on different types of holomorphic function spaces. We add new results and give a complete characterization of the isometric univalently induced composition operators acting between Bloch-type spaces. We also add few results on the closed-range determination of composition operators on Bloch-type spaces and present the problems that are still open.

2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1973-1981
Author(s):  
C Telloli ◽  
A Rizzo ◽  
C Canducci ◽  
P Bartolomei

ABSTRACTThe ENEA Radiocarbon Laboratory (Bologna, Italy) has been operating since 1985; it is the oldest among such laboratories operating in Italy and has been active for about 30 years in the field of dating of different types of samples with the radiocarbon (14C) liquid scintillation method. This study shows the detailed procedure for radiocarbon analysis on bioplastic materials by means of the synthesis of benzene, which includes CO2 production and purification, synthesis of acetylene, and synthesis and collection of benzene. The changes made to the original design of the synthesis procedures and the operational parameters adopted to optimize the combustion of the plastic materials are described. The measurement of 14C activity was performed using the liquid scintillation counting technique by a QuantulusTM 1220 low-background counter. The δ13C content was compared with the percentage of 14C concentration for the characterization of the bio content in plastic used in the food packaging.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Liankuo Zhao

We give a complete characterization of bounded invertible weighted composition operators on the Fock space ofCN.


Analysis ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 145-154
Author(s):  
Kuldip Raj ◽  
Charu Sharma

Abstract In the present paper we characterize the compact, invertible, Fredholm and closed range weighted composition operators on Cesàro function spaces. We also make an effort to compute the essential norm of weighted composition operators.


1998 ◽  
Vol 537 ◽  
Author(s):  
E. E. Reuter ◽  
R. Zhang ◽  
T. F. Kuech ◽  
S. G. Bishop

AbstractWe have done a comparative study of carbon-doped GaN and undoped GaN utilizing photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies in order to investigate deep levels involved in yellow luminescence (YL) and red luminescence (RL). When the GaN was excited by above-bandgap light, red luminescence (RL) centered at 1.82 eV was the dominant below-gap PL from undoped GaN, but carbon-doped GaN below-gap PL was dominated by yellow luminescence (YL) centered at 2.2 eV. When exciting PL below the band-gap with 2.4 eV light, undoped GaN had a RL peak centered at 1.5 eV and carbon-doped GaN had a RL peak centered at 1.65 eV. PLE spectra of carbon-doped GaN, detecting at 1.56 eV, exhibited a strong, broad excitation band extending from about 2.1 to 2.8 eV with an unusual shape that may be due to two or more overlapping excitation bands. This RL PLE band was not observed in undoped GaN. We also demonstrate that PL spectra excited by below gap light in GaN films on sapphire substrates are readily contaminated by 1.6-1.8 eV and 2.1-2.5 eV chromium-related emission from the substrate. A complete characterization of the Cr emission and excitation bands for sapphire substrates enables the determination of the excitation and detection wavelengths required to obtain GaN PL and PLE spectra that are free of contributions from substrate emission.


2021 ◽  
Author(s):  
Ashana Puri ◽  
Hiep X Nguyen ◽  
Akeemat O Tijani ◽  
Ajay K Banga

Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.


2020 ◽  
Vol 153 (7) ◽  
pp. 074310 ◽  
Author(s):  
Dominik Wehrli ◽  
Matthieu Génévriez ◽  
Stefan Knecht ◽  
Markus Reiher ◽  
Frédéric Merkt

Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 90 ◽  
Author(s):  
Giovanni Bazzoni ◽  
Alberto Raffero

Motivated by known results in locally conformal symplectic geometry, we study different classes of G 2 -structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G 2 -structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G 2 -structures.


2005 ◽  
Vol 128 (3) ◽  
pp. 543-547 ◽  
Author(s):  
Guy M. Genin ◽  
Joseph Genin

Velocity transducer placement to uniquely determine the angular velocity of a rigid body is investigated. The angular velocity of a rigid body can be determined with no fewer than five properly placed velocity transducers, if no other types of sensors are present and no algebraic constraint equation involving the angular velocity vector can be written. Complete characterization of the velocity of a rigid body requires six transducers. Choice of transducer placement and orientation requires care, as suboptimal transducer placement can result in data from which the determination of a unique angular velocity vector is impossible. Conditions for successful transducer placement are established, and two examples of adequate transducer placement are presented: an Earth-penetrating projectile, and a bioengineering device for the measurement of head motion.


Sign in / Sign up

Export Citation Format

Share Document