Characterization of Different Types of Biomass Wastes Using Thermogravimetric and ICP-MS Analyses

2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG

2020 ◽  
Vol 246 (6) ◽  
pp. 1193-1205 ◽  
Author(s):  
Nattane Luíza da Costa ◽  
Joao Paulo Bianchi Ximenez ◽  
Jairo Lisboa Rodrigues ◽  
Fernando Barbosa ◽  
Rommel Barbosa

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Davide Spanu ◽  
Gilberto Binda ◽  
Marcello Marelli ◽  
Laura Rampazzi ◽  
Sandro Recchia ◽  
...  

A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).


Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1973-1981
Author(s):  
C Telloli ◽  
A Rizzo ◽  
C Canducci ◽  
P Bartolomei

ABSTRACTThe ENEA Radiocarbon Laboratory (Bologna, Italy) has been operating since 1985; it is the oldest among such laboratories operating in Italy and has been active for about 30 years in the field of dating of different types of samples with the radiocarbon (14C) liquid scintillation method. This study shows the detailed procedure for radiocarbon analysis on bioplastic materials by means of the synthesis of benzene, which includes CO2 production and purification, synthesis of acetylene, and synthesis and collection of benzene. The changes made to the original design of the synthesis procedures and the operational parameters adopted to optimize the combustion of the plastic materials are described. The measurement of 14C activity was performed using the liquid scintillation counting technique by a QuantulusTM 1220 low-background counter. The δ13C content was compared with the percentage of 14C concentration for the characterization of the bio content in plastic used in the food packaging.


2019 ◽  
Vol 85 (4) ◽  
pp. 110-113
Author(s):  
Olexandr Ponomarenko ◽  
Anatolyi Samchuk ◽  
Kateryna Vovk ◽  
Igor Shvaika ◽  
Ganna Grodzinskaya

The analytical technologies of sample preparation of rocks and mushrooms using the microwave field for the determination of germanium by the method of mass spectrometry with inductively coupled plasma (ICP-MS analysis) have been developed. Germanium is a rare element. Germanium is homology of silicon and carbon. To date, the definition of low content of germanium in geological objects is a rather complex analytical task, which requires its concentration - extraction, co-precipitation, ion exchange. At present, the harmonious combination of the method of natural objects decomposition in the microwave field and germanium determination using ICP-MS analysis is particularly promising. Sample preparation of silicate rocks for ICP-MS determination of germanium was carried out by decomposition in a mixture of hydrofluoric, phosphate and nitric acids (5: 5: 2) in a microwave oven program at 240°C for 30 min. Sample preparation of mushrooms for ICP-MS germanium determination was carried out according to the following scheme. Initially, the dried sample was sealed in the presence of CaO, after dissolving it in a mixture of HNO3+HF+H3PO4 (6:6:1). Ge solution was extracted by Nazarenko V.A. extraction method. The developed analytical schemes have made it possible to significantly reduce the duration and labor intensity of sample preparation. The obtained solutions were analyzed using an inductively coupled plasma mass spectrometer. The developed method for determining germanium by ICP-MS analysis has been successfully tested on standard rock samples. The obtained results are in accordance with the accepted attribute, the relative standard deviation Sr ranges from 0.7-0.9. The data on the content and distribution of germanium in the Boletales fungi are obtained. They indicate wild mushrooms contain high levels of germanium, especially Boletus and Mushroom biospores. These studies are necessary because the essential properties of germanium and its compounds attract special attention of scientists today. Complementary Ge compounds which have hypotensive, bactericidal, antiviral and antitumor effects have already been synthesized.


2021 ◽  
Author(s):  
Ashana Puri ◽  
Hiep X Nguyen ◽  
Akeemat O Tijani ◽  
Ajay K Banga

Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.


Sign in / Sign up

Export Citation Format

Share Document