scholarly journals Particle Swarm Optimization Based Noncoherent Detector for Ultra-Wideband Radio in Intensive Multipath Environments

Author(s):  
Bin Li ◽  
Zheng Zhou ◽  
Weixia Zou ◽  
Wanxin Gao
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Zubair ◽  
Muhammad Moinuddin

Ultra wideband (UWB) systems are the most appropriate for high data rate wireless transmission with low power consumption. However, the antenna design for UWB has been a challenging task. Moreover, it is always desirable to have more freedom by designing different shape antennas with identical characteristics so that they can be used in either transmitter or receiver depending on other physical constraints such as area. To tackle these issues, in this paper, we have investigated a joint optimization of three different shape-printed monopole antennas, namely, printed square monopole antenna, printed circular monopole antenna and printed hexagonal monopole antenna, for UWB applications. More specifically, we have obtained the optimized geometrical parameters of these antennas by minimizing the mean-square-error for desired lower band edge frequency, quality factor, and bandwidth. The objective of joint optimization is to have identical frequency characteristics for the aforementioned three types of PMA which will give a freedom to interchangeably use them at either side, transmitting or receiving. Moreover, we employ particle swarm optimization (PSO) algorithm for our problem as it is well known in the literature that PSO performs well in electromagnetic and antenna applications. Simulation results are presented to show the performance of the proposed design.


Author(s):  
Debanjali Sarkar ◽  
Taimoor Khan ◽  
Fazal Ahmed Talukdar

Abstract Optimization of hyperparameters of artificial neural network (ANN) usually involves a trial and error approach which is not only computationally expensive but also fails to predict a near-optimal solution most of the time. To design a better optimized ANN model, evolutionary algorithms are widely utilized to determine hyperparameters. This work proposes hyperparameters optimization of the ANN model using an improved particle swarm optimization (IPSO) algorithm. The different ANN hyperparameters considered are a number of hidden layers, neurons in each hidden layer, activation function, and training function. The proposed technique is validated using inverse modeling of two meander line electromagnetic bandgap unit cells and a slotted ultra-wideband antenna loaded with EBG structures. Three other evolutionary algorithms viz. hybrid PSO, conventional PSO, and genetic algorithm are also adopted for the hyperparameter optimization of the ANN models for comparative analysis. Performances of all the models are evaluated using quantitative assessment parameters viz. mean square error, mean absolute percentage deviation, and coefficient of determination (R2). The comparative investigation establishes the accurate and efficient prediction capability of the ANN models tuned using IPSO compared to other evolutionary algorithms.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document