scholarly journals Periodic and Solitary-Wave Solutions for a Variant of theK(3,2)Equation

2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Jiangbo Zhou ◽  
Lixin Tian

We employ the bifurcation method of planar dynamical systems and qualitative theory of polynomial differential systems to derive new bounded traveling-wave solutions for a variant of theK(3,2)equation. For the focusing branch, we obtain hump-shaped and valley-shaped solitary-wave solutions and some periodic solutions. For the defocusing branch, the nonexistence of solitary traveling wave solutions is shown. Meanwhile, some periodic solutions are also obtained. The results presented in this paper supplement the previous results.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Song ◽  
Zhengrong Liu

We use the bifurcation method of dynamical systems to study the traveling wave solutions for the generalized Zakharov equations. A number of traveling wave solutions are obtained. Those solutions contain explicit periodic wave solutions, periodic blow-up wave solutions, unbounded wave solutions, kink profile solitary wave solutions, and solitary wave solutions. Relations of the traveling wave solutions are given. Some previous results are extended.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Can Chen ◽  
Weiguo Rui ◽  
Yao Long

In this paper, by using the integral bifurcation method, we studied the Kudryashov-Sinelshchikov equation. In the special parametric conditions, some singular and nonsingular exact traveling wave solutions, such as periodic cusp-wave solutions, periodic loop-wave solutions, smooth loop-soliton solutions, smooth solitary wave solutions, periodic double wave solutions, periodic compacton solutions, and nonsmooth peakon solutions are obtained. Further more, the dynamic behaviors of these exact traveling wave solutions are investigated. It is found that the waveforms of some traveling wave solutions vary with the changes of parameters.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Weiguo Rui

By using the integral bifurcation method, a generalized Tzitzéica-Dodd-Bullough-Mikhailov (TDBM) equation is studied. Under different parameters, we investigated different kinds of exact traveling wave solutions of this generalized TDBM equation. Many singular traveling wave solutions with blow-up form and broken form, such as periodic blow-up wave solutions, solitary wave solutions of blow-up form, broken solitary wave solutions, broken kink wave solutions, and some unboundary wave solutions, are obtained. In order to visually show dynamical behaviors of these exact solutions, we plot graphs of profiles for some exact solutions and discuss their dynamical properties.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ming Song

We use the bifurcation method of dynamical systems to study the traveling wave solutions for the generalized Zakharov equations. A number of traveling wave solutions are obtained. Those solutions contain explicit periodic blow-up wave solutions and solitary wave solutions.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
E. M. E. Zayed ◽  
S. A. Hoda Ibrahim ◽  
M. A. M. Abdelaziz

The two variables -expansion method is proposed in this paper to construct new exact traveling wave solutions with parameters of the nonlinear -dimensional Kadomtsev-Petviashvili equation. This method can be considered as an extension of the basic -expansion method obtained recently by Wang et al. When the parameters are replaced by special values, the well-known solitary wave solutions and the trigonometric periodic solutions of this equation were rediscovered from the traveling waves.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Wenbin Zhang ◽  
Jiangbo Zhou

We employ the bifurcation theory of planar dynamical system to investigate the traveling-wave solutions of the generalized Zakharov-Kuznetsov equation. Four important types of traveling wave solutions are obtained, which include the solitary wave solutions, periodic solutions, kink solutions, and antikink solutions.


2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Jiyu Zhong ◽  
Shengfu Deng

In this paper, we investigate the traveling wave solutions of a two-component Dullin–Gottwald–Holm (DGH) system. By qualitative analysis methods of planar systems, we investigate completely the topological behavior of the solutions of the traveling wave system, which is derived from the two-component Dullin–Gottwald–Holm system, and show the corresponding phase portraits. We prove the topological types of degenerate equilibria by the technique of desingularization. According to the dynamical behaviors of the solutions, we give all the bounded exact traveling wave solutions of the system, including solitary wave solutions, periodic wave solutions, cusp solitary wave solutions, periodic cusp wave solutions, compactonlike wave solutions, and kinklike and antikinklike wave solutions. Furthermore, to verify the correctness of our results, we simulate these bounded wave solutions using the software maple version 18.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
Norhashidah Hj. Mohd. Ali

The modified simple equation method is significant for finding the exact traveling wave solutions of nonlinear evolution equations (NLEEs) in mathematical physics. In this paper, we bring in the modified simple equation (MSE) method for solving NLEEs via the Generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony (GZK-BBM) equation and the right-handed noncommutative Burgers' (nc-Burgers) equations and achieve the exact solutions involving parameters. When the parameters are taken as special values, the solitary wave solutions are originated from the traveling wave solutions. It is established that the MSE method offers a further influential mathematical tool for constructing the exact solutions of NLEEs in mathematical physics.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250305 ◽  
Author(s):  
JIBIN LI ◽  
ZHIJUN QIAO

In this paper, we apply the method of dynamical systems to a generalized two-component Camassa–Holm system. Through analysis, we obtain solitary wave solutions, kink and anti-kink wave solutions, cusp wave solutions, breaking wave solutions, and smooth and nonsmooth periodic wave solutions. To guarantee the existence of these solutions, we give constraint conditions among the parameters associated with the generalized Camassa–Holm system. Choosing some special parameters, we obtain exact parametric representations of the traveling wave solutions.


2016 ◽  
Vol 2016 ◽  
pp. 1-15
Author(s):  
Qing Meng ◽  
Bin He

The generalized HD type equation is studied by using the bifurcation method of dynamical systems. From a dynamic point of view, the existence of different kinds of traveling waves which include periodic loop soliton, periodic cusp wave, smooth periodic wave, loop soliton, cuspon, smooth solitary wave, and kink-like wave is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given. Also, all possible exact parametric representations of the bounded waves are presented and their relations are stated.


Sign in / Sign up

Export Citation Format

Share Document