scholarly journals A Comparison of Splitting Techniques for 3D Complex Padé Fourier Finite Difference Migration

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Jessé C. Costa ◽  
Débora Mondini ◽  
Jörg Schleicher ◽  
Amélia Novais

Three-dimensional wave-equation migration techniques are still quite expensive because of the huge matrices that need to be inverted. Several techniques have been proposed to reduce this cost by splitting the full 3D problem into a sequence of 2D problems. We compare the performance of splitting techniques for stable 3D Fourier finite-difference (FFD) migration techniques in terms of image quality and computational cost. The FFD methods are complex Padé FFD and FFD plus interpolation, and the compared splitting techniques are two- and four-way splitting as well as alternating four-way splitting, that is, splitting into the coordinate directions at one depth and the diagonal directions at the next depth level. From numerical examples in homogeneous and inhomogeneous media, we conclude that, though theoretically less accurate, alternate four-way splitting yields results of comparable quality as full four-way splitting at the cost of two-way splitting.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
D. Mondini ◽  
J. C. Costa ◽  
J. Schleicher ◽  
A. Novais

Three-dimensional wave-equation migration techniques are still quite expensive because of the huge matrices that need to be inverted. Several techniques have been proposed to reduce this cost by splitting the full 3D problem into a sequence of 2D problems. To reduce errors, the Li correction is applied at regular multiples of depth extrapolation increment. We compare the performance of splitting techniques in wave propagation for 3D finite-difference (FD) migration in terms of image quality and computational cost. We study the behaviour of the complex Padé approximation in combination with two- and alternating four-way splitting, that is, splitting into the coordinate directions at one depth and the diagonal directions at the next depth level. We also extend the Li correction for use with the complex Padé expansion and diagonal directions. From numerical examples in inhomogeneous media, we conclude that alternate four-way splitting is the most cost-effective strategy to reduce numerical anisotropy in complex Padé 3D FD migration.


2014 ◽  
Vol 32 (3) ◽  
pp. 497
Author(s):  
Gary Corey Aldunate ◽  
Reynam C. Pestana

ABSTRACT. The 3-D acoustic wave equation is generally solved using finite difference schemes on the mesh which defines the velocity model. However, whennumerical solution of the wave equation is done by finite difference schemes, attention should be taken with respect to dispersion and numerical stability. To overcomethese problems, one alternative is to solve the wave equation in the Fourier domain. This approach is stabler and makes possible to separate the full wave equation inits unidirectional equations. Thus, the full wave equation is decoupled in two first order differential equations, namely two equations related to the vertical component:upgoing (-Z) and downgoing (+Z) unidirectional equations. Among the solution methods, we can highlight the Split-Step-Plus-Interpolation (SS-PSPI). This methodhas been proven to be quite adequate for migration problems in 3-D media, providing satisfactory results at low computational cost. In this work, 3-D seismic modelingis implemented using Huygens’ principle and an equivalent simulation of the full wave equation solution is obtained by properly applying the solutions of the twouncoupled equations. In this procedure, a point source wavefield located at the surface is extrapolated downward recursively until the last depth level in the velocityfield is reached. A second extrapolation is done in order to extrapolate the wavefield upwards, from the last depth level to the surface level, and at each depth level thepreviously stored wavefield (saved during the downgoing step) is convolved with a reflectivity model in order to simulate secondary sources. To perform depth pre-stackmigration of 3-D datasets, the decoupled wave equations were used and the same process described for seismic modeling is applied for the propagation of sources andreceivers wavefields. Thus, depth migrated images are obtained using appropriate image conditions: the upgoing and downgoing wavefields of sources and receiversare correlated and the migrated images are formed. The seismic modeling and migration methods using upgoing and downgoing wavefields were tested on simple 3-Dmodels. Tests showed that the addition of upgoing wavefield in seismic migration, provide better result and highlight steep deep reflectors which do not appear in theresults using only downgoing wavefields.Keywords: 3-D seismic modeling and migration, Upoing and downgoing wavefields, Split-Step Phase Shift Plus Interpolation method, Decoupled wave equations,One-Way equations.RESUMO. A equação da onda acústica tridimensional é normalmente resolvida usando-se esquemas de diferenças finitas sobre a malha que define o modelo develocidade. Entretanto, deve-se ter cuidado com a dispersão e a estabilidade numérica durante o processo de propagação da onda na malha. Uma outra alternativa, bastante eficiente de se resolver a equação completa da onda, é desacoplando-a em duas equações de onda unidirecionais no domínio transformado de Fourier (solução pseudo-espectral). Assim, a equação completa da onda é separada em duas equações diferenciais de primeira ordem relativa á componente vertical: equação da ondaascendente (-Z) e da onda descendente (+Z). Normalmente, a equação unidirecional é resolvida com diferentes ordens de aproximação. Entre esses métodos, podemos destacar o método “Split-Step-Plus-Interpolation” (SS-PSPI), que tem sido bastante adequado para problemas de migração em meios 3-D, fornecendo resultados aum baixo custo computacional. Neste trabalho, o modelamento sísmico 3-D foi implementado usando-se o princípio de Huygens com as duas equações de onda unidirecionais desacopladas. Com o objetivo de simular uma solução equivalente à solução da equação completa, uma fonte pontual localizada na superfície é extrapoladaem profundidade, de forma recursiva, até atingir o último nível de profundidade na malha do modelo de velocidades. Uma segunda extrapolação é realizada para extrapolar para cima o campo de onda, desde o último nível em profundidade até à superfície do modelo. Assim, os receptores localizados na superfície registram ocampo de onda ascendente, que trazem informações dos refletores em subsuperfície na forma de reflexões e difrações. Para realizar a migração pré-empilhamento em profundidade de dados 3-D, usando-se as equações de onda desacopladas, o mesmo procedimento descrito para o modelamento sísmico é utilizado para a propagação dos campos de onda de fontes e receptores. Imagens migradas são obtidas usando-se condições de imagem apropriadas, onde os campos de onda da fonte e dos receptores, descendente e ascendente, são correlacionados. Sobre modelos 3-D simples foram testados os métodos de modelamento e migração, levando em conta oscampos de onda ascendente e descendente. Ficando, assim, evidenciado que no método de migração sísmica, proposto aqui, a adição do campo de onda ascendente fornece um melhor resultado, ressaltando os refletores íngremes que não aparecem nos resultados utilizando-se apenas a extrapolação do campo de onda descendente.Palavras-chave: Migração e modelagem sísmica 3-D, Migração em duas etapas mais interpolação, equações de ondas unidirecionais.


2019 ◽  
Vol 81 (3) ◽  
pp. 1181-1209 ◽  
Author(s):  
F. Smith ◽  
S. Tsynkov ◽  
E. Turkel

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 983 ◽  
Author(s):  
Chuntao Yin ◽  
Changpin Li ◽  
Qinsheng Bi

In 1923, Hadamard encountered a class of integrals with strong singularities when using a particular Green’s function to solve the cylindrical wave equation. He ignored the infinite parts of such integrals after integrating by parts. Such an idea is very practical and useful in many physical models, e.g., the crack problems of both planar and three-dimensional elasticities. In this paper, we present the rectangular and trapezoidal formulas to approximate the Hadamard derivative by the idea of the finite part integral. Then, we apply the proposed numerical methods to the differential equation with the Hadamard derivative. Finally, several numerical examples are displayed to show the effectiveness of the basic idea and technique.


Sign in / Sign up

Export Citation Format

Share Document