scholarly journals On Simultaneous Farthest Points in

2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Sh. Al-Sharif ◽  
M. Rawashdeh

Let be a Banach space and let be a closed bounded subset of . For , we set  . The set is called simultaneously remotal if, for any , there exists such that  . In this paper, we show that if is separable simultaneously remotal in , then the set of -Bochner integrable functions, , is simultaneously remotal in . Some other results are presented.

2012 ◽  
Vol 21 (2) ◽  
pp. 123-128
Author(s):  
SH. AL-SHARIF ◽  

Let X be a real Banach space and G be a closed bounded subset of X. For x e X, we set ρ (x, G) = sup {kx − yk : y e G} . The set G is called remotal if for any x e X, there exists g e G such that ρ (x, G) = kx − gk . In this paper we show that for a separable remotal set G ⊂ X, the set E(G) is remotal in E(X), where E(X) is the Kothe Bochner function space. Some other results are presented.


Author(s):  
Zukhra T. Zhukovskaya ◽  
Sergey E. Zhukovskiy

We consider the problem of a double fixed point of pairs of continuous mappings defined on a convex closed bounded subset of a Banach space. It is shown that if one of the mappings is completely continuous and the other is continuous, then the property of the existence of fixed points is stable under contracting perturbations of the mappings. We obtain estimates for the distance from a given pair of points to double fixed points of perturbed mappings. We consider the problem of a fixed point of a completely continuous mapping on a convex closed bounded subset of a Banach space. It is shown that the property of the existence of a fixed point of a completely continuous map is stable under contracting perturbations. Estimates of the distance from a given point to a fixed point are obtained. As an application of the obtained results, the solvability of a difference equation of a special type is proved.


Author(s):  
M. Khandaqji ◽  
Sh. Al-Sharif

LetXbe a Banach space and letLΦ(I,X)denote the space of OrliczX-valued integrable functions on the unit intervalIequipped with the Luxemburg norm. In this paper, we present a distance formula dist(f1,f2,LΦ(I,G))Φ, whereGis a closed subspace ofX, andf1,f2∈LΦ(I,X). Moreover, some related results concerning best simultaneous approximation inLΦ(I,X)are presented.


1980 ◽  
Vol 32 (2) ◽  
pp. 421-430 ◽  
Author(s):  
Teck-Cheong Lim

Let X be a Banach space and B a bounded subset of X. For each x ∈ X, define R(x) = sup{‖x – y‖ : y ∈ B}. If C is a nonempty subset of X, we call the number R = inƒ{R(x) : x ∈ C} the Chebyshev radius of B in C and the set the Chebyshev center of B in C. It is well known that if C is weakly compact and convex, then and if, in addition, X is uniformly convex, then the Chebyshev center is unique; see e.g., [9].Let {Bα : α ∈ ∧} be a decreasing net of bounded subsets of X. For each x ∈ X and each α ∈ ∧, define


1977 ◽  
Vol 29 (5) ◽  
pp. 963-970 ◽  
Author(s):  
Mark A. Smith

In a Banach space, the directional modulus of rotundity, δ (ϵ, z), measures the minimum depth at which the midpoints of all chords of the unit ball which are parallel to z and of length at least ϵ are buried beneath the surface. A Banach space is uniformly rotund in every direction (URED) if δ (ϵ, z) is positive for every positive ϵ and every nonzero element z. This concept of directionalized uniform rotundity was introduced by Garkavi [6] to characterize those Banach spaces in which every bounded subset has at most one Čebyšev center.


1988 ◽  
Vol 103 (3) ◽  
pp. 497-502
Author(s):  
Susumu Okada ◽  
Yoshiaki Okazaki

Let X be an infinite-dimensional Banach space. It is well-known that the space of X-valued, Pettis integrable functions is not always complete with respect to the topology of convergence in mean, that is, the uniform convergence of indefinite integrals (see [14]). The Archimedes integral introduced in [9] does not suffer from this defect. For the Archimedes integral, functions to be integrated are allowed to take values in a locally convex space Y larger than the space X while X accommodates the values of indefinite integrals. Moreover, there exists a locally convex space Y, into which X is continuously embedded, such that the space ℒ(μX, Y) of Y-valued, Archimedes integrable functions is identical to the completion of the space of X valued, simple functions with repect to the toplogy of convergence in mean, for each non-negative measure μ (see [9]).


Author(s):  
S. Okada ◽  
W. J. Ricker

AbstractLet m be a vector measure with values in a Banach space X. If L1(m) denotes the space of all m integrable functions then, with respect to the mean convergence topology, L1(m) is a Banach space. A natural operator associated with m is its integration map Im which sends each f of L1(m) to the element ∫fdm (of X). Many properties of the (continuous) operator Im are closely related to the nature of the space L1(m). In general, it is difficult to identify L1(m). We aim to exhibit non-trivial examples of measures m in (non-reflexive) spaces X for which L1(m) can be explicitly computed and such that Im is not weakly compact. The examples include some well known operators from analysis (the Fourier transform on L1 ([−π, π]), the Volterra operator on L1 ([0, 1]), compact self-adjoint operators in a Hilbert space); such operators can be identified with integration maps Im (or their restrictions) for suitable measures m.


2005 ◽  
Vol 71 (3) ◽  
pp. 425-433 ◽  
Author(s):  
Pradipta Bandyopadhyay ◽  
S. Dutta

In this paper, we consider farthest points and the farthest distance map of a closed bounded set in a Banach space. We show, inter alia, that a strictly convex Banach space has the Mazur intersection property for weakly compact sets if and only if every such set is the closed convex hull of its farthest points, and recapture a classical result of Lau in a broader set-up. We obtain an expression for the subdifferential of the farthest distance map in the spirit of Preiss' Theorem which in turn extends a result of Westphal and Schwartz, showing that the subdifferential of the farthest distance map is the unique maximal monotone extension of a densely defined monotone operator involving the duality map and the farthest point map.


Filomat ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 3777-3787
Author(s):  
Mona Khandaqji ◽  
Aliaa Burqan

For a Banach space X, L?(T,X) denotes the metric space of all X-valued ?-integrable functions f : T ? X, where the measure space (T,?,?) is a complete positive ?-finite and ? is an increasing subadditive continuous function on [0,?) with ?(0) = 0. In this paper we discuss the proximinality problem for the monotonous norm on best simultaneous approximation from the closed subspace Y?X to a finite number of elements in X.


Sign in / Sign up

Export Citation Format

Share Document