Equi-Riemann and Equi-Riemann-Type Integrable Functions with Values in a Banach Space

2018 ◽  
Vol 43 (2) ◽  
pp. 301
Author(s):  
Mondal ◽  
Dey ◽  
Ali
2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Sh. Al-Sharif ◽  
M. Rawashdeh

Let be a Banach space and let be a closed bounded subset of . For , we set  . The set is called simultaneously remotal if, for any , there exists such that  . In this paper, we show that if is separable simultaneously remotal in , then the set of -Bochner integrable functions, , is simultaneously remotal in . Some other results are presented.


Author(s):  
M. Khandaqji ◽  
Sh. Al-Sharif

LetXbe a Banach space and letLΦ(I,X)denote the space of OrliczX-valued integrable functions on the unit intervalIequipped with the Luxemburg norm. In this paper, we present a distance formula dist(f1,f2,LΦ(I,G))Φ, whereGis a closed subspace ofX, andf1,f2∈LΦ(I,X). Moreover, some related results concerning best simultaneous approximation inLΦ(I,X)are presented.


1988 ◽  
Vol 103 (3) ◽  
pp. 497-502
Author(s):  
Susumu Okada ◽  
Yoshiaki Okazaki

Let X be an infinite-dimensional Banach space. It is well-known that the space of X-valued, Pettis integrable functions is not always complete with respect to the topology of convergence in mean, that is, the uniform convergence of indefinite integrals (see [14]). The Archimedes integral introduced in [9] does not suffer from this defect. For the Archimedes integral, functions to be integrated are allowed to take values in a locally convex space Y larger than the space X while X accommodates the values of indefinite integrals. Moreover, there exists a locally convex space Y, into which X is continuously embedded, such that the space ℒ(μX, Y) of Y-valued, Archimedes integrable functions is identical to the completion of the space of X valued, simple functions with repect to the toplogy of convergence in mean, for each non-negative measure μ (see [9]).


Author(s):  
S. Okada ◽  
W. J. Ricker

AbstractLet m be a vector measure with values in a Banach space X. If L1(m) denotes the space of all m integrable functions then, with respect to the mean convergence topology, L1(m) is a Banach space. A natural operator associated with m is its integration map Im which sends each f of L1(m) to the element ∫fdm (of X). Many properties of the (continuous) operator Im are closely related to the nature of the space L1(m). In general, it is difficult to identify L1(m). We aim to exhibit non-trivial examples of measures m in (non-reflexive) spaces X for which L1(m) can be explicitly computed and such that Im is not weakly compact. The examples include some well known operators from analysis (the Fourier transform on L1 ([−π, π]), the Volterra operator on L1 ([0, 1]), compact self-adjoint operators in a Hilbert space); such operators can be identified with integration maps Im (or their restrictions) for suitable measures m.


Filomat ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 3777-3787
Author(s):  
Mona Khandaqji ◽  
Aliaa Burqan

For a Banach space X, L?(T,X) denotes the metric space of all X-valued ?-integrable functions f : T ? X, where the measure space (T,?,?) is a complete positive ?-finite and ? is an increasing subadditive continuous function on [0,?) with ?(0) = 0. In this paper we discuss the proximinality problem for the monotonous norm on best simultaneous approximation from the closed subspace Y?X to a finite number of elements in X.


2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Tijani Pakhrou

Let X be a Banach space. Let 1≤p<∞ and denote by Lp(μ,X) the Banach space of all X-valued Bochner p-integrable functions on a certain positive complete σ-finite measure space (Ω,Σ,μ), endowed with the usual p-norm. In this paper, the theory of lifting is used to prove that, for any weakly compact subset W of X, the set Lp(μ,W) is N-simultaneously proximinal in Lp(μ,X) for any arbitrary monotonous norm N in Rn.


1992 ◽  
Vol 34 (2) ◽  
pp. 201-206
Author(s):  
G. Schlüchtermann

A locally convex space (E, ) has the Mazur Property if and only if every linear -sequential continuous functional is -continuous (see [11]).In the Banach space setting, a Banach space X is a Mazur space if and only if the dual space X* endowed with the w*-topology has the Mazur property. The Mazur property was introduced by S. Mazur, and, for Banach spaces, it is investigated in detail in [4], where relations with other properties and applications to measure theory are listed. T. Kappeler obtained (see [8]) certain results for the injective tensor product and showed that L1(μ, X), the space of Bochner-integrable functions over a finite and positive measure space (S, σ, μ), is a Mazur space provided X is also, and ℓ1 does not embed in X.


1962 ◽  
Vol 2 (3) ◽  
pp. 295-300
Author(s):  
Basil C. Rennie

Let f1(x), f2(x), … be a sequence of functions belonging to the real or complex Banach space L, (see S. Banach: [1] (The results can be generalised to functions on any space that is the union of countably many sets of finite measure). We are concerned with various properties that such a sequence may have, and in particular with the more important kinds of convergence (strong, weak and pointwise). This article shows what relations connect the various properties considered; for instance that for strong convergence (i.e. ║fn — f║ → 0) it is necessary and sufficient firstly that the sequence should converge weakly (i.e. if g is bounded and measurable then f(fn(x) — f(x))g(x)dx → 0) and secondly that any sub-sequence should contain a sub-sub-sequence converging p.p. to f(x).


1992 ◽  
Vol 111 (3) ◽  
pp. 531-534 ◽  
Author(s):  
José Mendoza

AbstractLet E be a Banach space, let (Ω, Σ, μ) a finite measure space, let 1 < p < ∞ and let Lp(μ;E) the Banach space of all E-valued p-Bochner μ-integrable functions with its usual norm. In this note it is shown that E contains a complemented subspace isomorphic to l1 if (and only if) Lp(μ; E) does. An extension of this result is also given.


1993 ◽  
Vol 47 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Jinsik Mok Lee

Suppose that X is a real or complex Banach space with norm |·|. Then X is a Hilbert space if and only iffor all x in X and all X-valued Bochner integrable functions Y on the Lebesgue unit interval satisfying EY = 0 and |x − Y| ≤ 2 almost everywhere. This leads to the following biconcave-function characterisation: A Banach space X is a Hilbert space if and only if there is a biconcave function η: {(x, y) ∈ X × X: |x − y| ≤ 2} → R such that η(0, 0) = 2 andIf the condition η(0, 0) = 2 is eliminated, then the existence of such a function η characterises the class UMD (Banach spaces with the unconditionally property for martingale differences).


Sign in / Sign up

Export Citation Format

Share Document