scholarly journals Proof of Concept: Model Based Bionic Muscle with Hyperbolic Force-Velocity Relation

2012 ◽  
Vol 9 (3) ◽  
pp. 267-274 ◽  
Author(s):  
D. F. B. Haeufle ◽  
M. Günther ◽  
R. Blickhan ◽  
S. Schmitt

Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, a technical proof of this concept was presented. AE and PDE were implemented as electric motors, SE as a mechanical spring. The force-velocity relation of this artificial CE was determined in quick release experiments. The CE exhibited hyperbolic force-velocity dependency. This proof of concept can be seen as a well-founded starting point for the development of Hill-type artificial muscles.


2010 ◽  
Vol 278 (1704) ◽  
pp. 339-346 ◽  
Author(s):  
G. A. Cavagna ◽  
M. A. Legramandi ◽  
A. La Torre

Human running at low and intermediate speeds is characterized by a greater average force exerted after ‘landing’, when muscle–tendon units are stretched (‘hard landing’), and a lower average force exerted before ‘takeoff’, when muscle–tendon units shorten (‘soft takeoff’). This landing–takeoff asymmetry is consistent with the force–velocity relation of the ‘motor’ (i.e. with the basic property of muscle to resist stretching with a force greater than that developed during shortening), but it may also be due to the ‘machine’ (e.g. to the asymmetric lever system of the foot operating during stance). Hard landing and soft takeoff—never the reverse—were found in running, hopping and trotting animals using diverse lever systems, suggesting that the different machines evolved to comply with the basic force–velocity relation of the motor. Here we measure the mechanical energy of the centre of mass of the body in backward running, an exercise where the normal coupling between motor and machine is voluntarily disrupted, in order to see the relevance of the motor–machine interplay in human running. We find that the landing–takeoff asymmetry is reversed. The resulting ‘soft landing’ and ‘hard takeoff’ are associated with a reduced efficiency of positive work production. We conclude that the landing–takeoff asymmetry found in running, hopping and trotting is the expression of a convenient interplay between motor and machine. More metabolic energy must be spent in the opposite case when muscle is forced to work against its basic property (i.e. when it must exert a greater force during shortening and a lower force during stretching).



Author(s):  
Natasha Alechina ◽  
Hans van Ditmarsch ◽  
Rustam Galimullin ◽  
Tuo Wang

AbstractCoalition announcement logic (CAL) is one of the family of the logics of quantified announcements. It allows us to reason about what a coalition of agents can achieve by making announcements in the setting where the anti-coalition may have an announcement of their own to preclude the former from reaching its epistemic goals. In this paper, we describe a PSPACE-complete model checking algorithm for CAL that produces winning strategies for coalitions. The algorithm is implemented in a proof-of-concept model checker.









2015 ◽  
Vol 1 ◽  
pp. e33 ◽  
Author(s):  
Elisha D. Roberson

CRISPR/Cas9 is emerging as one of the most-used methods of genome modification in organisms ranging from bacteria to human cells. However, the efficiency of editing varies tremendously site-to-site. A recent report identified a novel motif, called the 3′GG motif, which substantially increases the efficiency of editing at all sites tested inC. elegans. Furthermore, they highlighted that previously published gRNAs with high editing efficiency also had this motif. I designed a Python command-line tool, ngg2, to identify 3′GG gRNA sites from indexed FASTA files. As a proof-of-concept, I screened for these motifs in six model genomes:Saccharomyces cerevisiae,Caenorhabditis elegans,Drosophila melanogaster,Danio rerio,Mus musculus, andHomo sapiens. I also scanned the genomes of pig (Sus scrofa) and African elephant (Loxodonta africana) to demonstrate the utility in non-model organisms. I identified more than 60 million single match 3′GG motifs in these genomes. Greater than 61% of all protein coding genes in the reference genomes had at least one unique 3′GG gRNA site overlapping an exon. In particular, more than 96% of mouse and 93% of human protein coding genes have at least one unique, overlapping 3′GG gRNA. These identified sites can be used as a starting point in gRNA selection, and the ngg2 tool provides an important ability to identify 3′GG editing sites in any species with an available genome sequence.



Author(s):  
Shintaro Toyoshima ◽  
Mitsumasa Miyashita


Sign in / Sign up

Export Citation Format

Share Document