scholarly journals Evolution of the FGF Gene Family

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Silvan Oulion ◽  
Stephanie Bertrand ◽  
Hector Escriva

Fibroblast Growth Factors (FGFs) are small proteins generally secreted, acting through binding to transmembrane tyrosine kinase receptors (FGFRs). Activation of FGFRs triggers several cytoplasmic cascades leading to the modification of cell behavior. FGFs play critical roles in a variety of developmental and physiological processes. Since their discovery in mammals, FGFs have been found in many metazoans and some arthropod viruses. Efforts have been previously made to decipher the evolutionary history of this family but conclusions were limited due to a poor taxonomic coverage. We took advantage of the availability of many new sequences from diverse metazoan lineages to further explore the possible evolutionary scenarios explaining the diversity of the FGF gene family. Our analyses, based on phylogenetics and synteny conservation approaches, allow us to propose a new classification of FGF genes into eight subfamilies, and to draw hypotheses for the evolutionary events leading to the present diversity of this gene family.

2018 ◽  
Author(s):  
Mónica Lopes-Marques ◽  
André M. Machado ◽  
Raquel Ruivo ◽  
Elza Fonseca ◽  
Estela Carvalho ◽  
...  

AbstractFatty acids (FAs) constitute a considerable fraction of all lipid molecules with a fundamental role in numerous physiological processes. In animals, the majority of complex lipid molecules are derived from the transformation of FAs through several biochemical pathways. Yet, for FAs to enroll in these pathways they require an activation step. FA activation is catalyzed by the rate limiting action of Acyl-CoA synthases. Several Acyl-CoA enzyme families have been previously described and classified according to the chain length of FA they process. Here, we address the evolutionary history of the ACSBG gene family which activates, FA with more than 16 carbons. Currently, two different ACSBG gene families, ACSBG1 and ACSBG2, are recognized in vertebrates. We provide evidence that a wider and unequal ACSBG gene repertoire is present in vertebrate lineages. We identify a novel ACSBG-like gene lineage which occurs specifically in amphibians, ray finned fish, coelacanths and chondrichthyes named ACSBG3. Also, we show that the ACSBG2 gene lineage duplicated in the Theria ancestor. Our findings, thus offer a far richer understanding on FA activation in vertebrates and provide key insights into the relevance of comparative and functional analysis to perceive physiological differences, namely those related with lipid metabolic pathways.


2017 ◽  
Author(s):  
Héctor A. Céspedes ◽  
Kattina Zavala ◽  
Juan C. Opazo

AbstractEvolutionary studies of genes that have been functionally characterized and whose variation has been associated with pathological conditions represent an opportunity to understand the genetic basis of pathologies. α2-adrenoreceptors (ADRA2) are a class of G protein-coupled receptors that regulate several physiological processes including blood pressure, platelet aggregation, insulin secretion, lipolysis, and neurotransmitter release. This gene family has been extensively studied from a molecular/physiological perspective, yet much less is known about its evolutionary history. Accordingly, the goal of this study was to investigate the evolutionary history of α2-adrenoreceptors (ADRA2) in vertebrates. Our results show that in addition to the three well-recognized α2-adrenoreceptor genes (ADRA2A, ADRA2B and ADRA2C), we recovered a clade that corresponds to the fourth member of the α2-adrenoreceptor gene family (ADRA2D). We also recovered a clade that possesses two ADRA2 sequences found in two lamprey species. Furthermore, our results show that mammals and crocodiles are characterized by possessing three α2-adrenoreceptor genes, whereas all other vertebrate groups possess the full repertoire of α2-adrenoreceptor genes. Among vertebrates ADRA2D seems to be a dispensable gene, as it was lost two independent times during the evolutionary history of the group. Additionally, we found that most examined species possess the most common alleles described for humans; however, there are cases in which non-human mammals possess the alternative variant.


2007 ◽  
Vol 237 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Nobuyuki Itoh ◽  
David M. Ornitz

2019 ◽  
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis Enrique Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

ABSTRACTDimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is predominantly degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter ecoparalogs (copies performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


2010 ◽  
Vol 10 (1) ◽  
pp. 308 ◽  
Author(s):  
Matteo Citarelli ◽  
Sachin Teotia ◽  
Rebecca S Lamb

Author(s):  
Elisabeth de Boer

The chapter starts with an overview of the history of dialect classification in Japan. A puzzling aspect of the distribution pattern of the Japanese dialects is the fact that many features, which cannot all be explained as retentions or simplifications, recur in geographically distant areas. These similarities have been commonly but unsatisfyingly regarded as the result of parallel independent developments. Phonological (including tonal), morphological, and lexical features are selected to illustrate the splits that result in the different branches of Japonic. Based on shared innovations, the new classification at the end of the chapter proposes a Izumo-Tōhoku branch, as well as a Kyūshū-Ryūkyū branch.


1998 ◽  
Vol 46 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Jean-Luc Desseyn ◽  
Marie-Pierre Buisine ◽  
Nicole Porchet ◽  
Jean-Pierre Aubert ◽  
Pierre Degand ◽  
...  

1977 ◽  
Vol 40 (3) ◽  
pp. 461-507 ◽  
Author(s):  
Gideon Goldenbekg

The accumulation of knowledge concerning the Semitic languages of Ethiopia has reached a stage when one may wish to venture upon a systematic comparative investigation of this linguistic group. Such an attempt is E. Hetzron'sEthiopian Semitic: studies in classification, which represents, in terms of genetic classification, the most detailed and penetrating comparative study hitherto undertaken in this field. The book is somewhat more ambitious than its subtitle would suggest; in fact it offers a fairly comprehensive exposition, well reasoned and carefully elaborated, of a new classification of the Ethiopian Semitic languages. And, as already argued a century ago, ‘in the field of cognate languages, classification is but a “modification” of the history of a language’, since ‘eo ipsothe history of language turns into a genetic classification’, or, as postulated in a more recent study, ‘the establishment of valid hypotheses concerning genetic relationships among languages is a necessary preliminary to the systematic reconstruction of their historical development’. The Ethiopian language area is sometimes mentioned as especially convenient for the comparativist. Indeed, ‘the field is inexhaustible and exceptionally fascinating’, as it comprises a rich variety of languages, dialects and ‘sub-dialects’’, Semitic and non-Semitic, spoken side by side in adjacent regions and at various substrata. However, such a linguistic situation is not necessarily favourable for applying the genealogical-comparative method, especially as regards interrelations between close, and rather fragmented, dialects.


2010 ◽  
Vol 33 (5) ◽  
pp. 402-403 ◽  
Author(s):  
Robert M. Seyfarth ◽  
Dorothy L. Cheney

AbstractAmong monkeys and apes, both the recognition and classification of individuals and the recognition and classification of vocalizations constitute discrete combinatorial systems. One system maps onto the other, suggesting that during human evolution kinship classifications and language shared a common cognitive precursor.


Gene ◽  
2006 ◽  
Vol 378 ◽  
pp. 74-83 ◽  
Author(s):  
Nicolás Frankel ◽  
Fernando Carrari ◽  
Esteban Hasson ◽  
Norberto D. Iusem

Sign in / Sign up

Export Citation Format

Share Document