scholarly journals Model Driven Integrated Decision-Making in Manufacturing Enterprises

2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Richard H. Weston

Decision making requirements and solutions are observed in four world class Manufacturing Enterprises (MEs). Observations made focus on deployed methods of complexity handling that facilitate multi-purpose, distributed decision making. Also observed are examples of partially deficient “integrated decision making” which stem from lack of understanding about how ME structural relations enable and/or constrain reachable ME behaviours. To begin to address this deficiency the paper outlines the use of a “reference model of ME decision making” which can inform the structural design of decision making systems in MEs. Also outlined is a “systematic model driven approach to modelling ME systems” which can particularise the reference model in specific case enterprises and thereby can “underpin integrated ME decision making”. Coherent decomposition and representational mechanisms have been incorporated into the model driven approach to systemise complexity handling. The paper also describes in outline an application of the modelling method in a case study ME and explains how its use has improved the integration of previously distinct planning functions. The modelling approach is particularly innovative in respect to the way it structures the coherent creation and experimental re-use of “fit for purpose” discrete event (predictive) simulation models at the multiple levels of abstraction.

2020 ◽  
Vol 70 (1) ◽  
pp. 54-59
Author(s):  
Zhi Zhu ◽  
Yonglin Lei ◽  
Yifan Zhu

Model-driven engineering has become popular in the combat effectiveness simulation systems engineering during these last years. It allows to systematically develop a simulation model in a composable way. However, implementing a conceptual model is really a complex and costly job if this is not guided under a well-established framework. Hence this study attempts to explore methodologies for engineering the development of simulation models. For this purpose, we define an ontological metamodelling framework. This framework starts with ontology-aware system conceptual descriptions, and then refines and transforms them toward system models until they reach final executable implementations. As a proof of concept, we identify a set of ontology-aware modelling frameworks in combat systems specification, then an underwater targets search scenario is presented as a motivating example for running simulations and results can be used as a reference for decision-making behaviors.


Author(s):  
Huy Tran ◽  
Ta’id Holmes ◽  
Uwe Zdun ◽  
Schahram Dustdar

This chapter introduces a view-based, model-driven approach for process-driven, service-oriented architectures. A typical business process consists of numerous tangled concerns, such as the process control flow, service invocations, fault handling, transactions, and so on. Our view-based approach separates these concerns into a number of tailored perspectives at different abstraction levels. On the one hand, the separation of process concerns helps reducing the complexity of process development by breaking a business process into appropriate architectural views. On the other hand, the separation of levels of abstraction offers appropriately adapted views to stakeholders, and therefore, helps quickly re-act to changes at the business level and at the technical level as well. Our approach is realized as a model-driven tool-chain for business process development.


Author(s):  
Jeffrey W. Hermann ◽  
Edward Lin ◽  
Guruprasad Pundoor

Simulation is a very useful tool for predicting supply chain performance. Because there are no standard simulation elements that represent accurately the activities in a supply chain, there exist a variety of approaches for developing supply chain simulation models. To improve this situation, this paper describes a novel supply chain simulation framework that follows the Supply Chain Operations Reference (SCOR) model. This framework has been used for building powerful simulation models that integrate discrete event simulation and spreadsheets. The simulation models are hierarchical and use submodels that capture activities specific to supply chains. The SCOR framework provides a basis for defining the level of detail in a way as to include as many features as possible, while not making them industry specific. This approach enables the reuse of submodels, which reduces development time. The paper describes the implementation of the simulation models and how the submodels interact during execution.


2014 ◽  
Vol 12 (2) ◽  
pp. 227-235 ◽  
Author(s):  
Javier Berrocal ◽  
Jose Garcia Alonso ◽  
Cristina Vicente Chicote ◽  
Juan Manuel Murillo

2021 ◽  
pp. 113538
Author(s):  
Ana Carolina Almeida ◽  
Fernanda Baião ◽  
Sérgio Lifschitz ◽  
Daniel Schwabe ◽  
Maria Luiza M. Campos

2013 ◽  
Vol 2013 ◽  
pp. 1-23 ◽  
Author(s):  
Tariq Masood ◽  
Richard H. Weston

Systematic model-driven decision-making is crucial to design, engineer, and transform manufacturing enterprises (MEs). Choosing and applying the best philosophies and techniques is challenging as most MEs deploy complex and unique configurations of process-resource systems and seek economies of scope and scale in respect of changing and distinctive product flows. This paper presents a novel systematic enhanced integrated modelling framework to facilitate transformation of MEs, which is centred on CIMOSA. Application of the new framework in an automotive industrial case study is also presented. The following new contributions to knowledge are made: (1) an innovative structured framework that can support various decisions in design, optimisation, and control to reconfigure MEs; (2) an enriched and generic process modelling approach with capability to represent both static and dynamic aspects of MEs; and (3) an automotive industrial case application showing benefits in terms of reduced lead time and cost with improved responsiveness of process-resource system with a special focus on PPC. It is anticipated that the new framework is not limited to only automotive industry but has a wider scope of application. Therefore, it would be interesting to extend its testing with different configurations and decision-making levels.


2021 ◽  
Vol 31 (4) ◽  
pp. 1-31
Author(s):  
Navonil Mustafee ◽  
Korina Katsaliaki ◽  
Simon J. E. Taylor

The field of Supply Chain Management (SCM ) is experiencing rapid strides in the use of Industry 4.0 technologies and the conceptualization of new supply chain configurations for online retail, sustainable and green supply chains, and the Circular Economy. Thus, there is an increasing impetus to use simulation techniques such as discrete-event simulation, agent-based simulation, and hybrid simulation in the context of SCM. In conventional supply chain simulation, the underlying constituents of the system like manufacturing, distribution, retail, and logistics processes are often modelled and executed as a single model. Unlike this conventional approach, a distributed supply chain simulation (DSCS) enables the coordinated execution of simulation models using specialist software. To understand the current state-of-the-art of DSCS, this paper presents a methodological review and categorization of literature in DSCS using a framework-based approach. Through a study of over 130 articles, we report on the motivation for using DSCS, the modelling techniques, the underlying distributed computing technologies and middleware, its advantages and a future agenda, and also limitations and trade-offs that may be associated with this approach. The increasing adoption of technologies like Internet-of-Things and Cloud Computing will ensure the availability of both data and models for distributed decision-making, which is likely to enable data-driven DSCS of the future. This review aims to inform organizational stakeholders, simulation researchers and practitioners, distributed systems developers and software vendors, as to the current state-of-the art of DSCS, and which will inform the development of future DSCS using new applied computing approaches.


2002 ◽  
Vol 44 (4) ◽  
pp. 1-12 ◽  
Author(s):  
Phil Mellor ◽  
Stuart Green

This paper describes a case study designed to demonstrate the feasibility of building a linked decision model based on the implications of distributed decision-making in healthcare, and thus to provide the ability to make quantified predictions of product offer performance. The approach taken was to adapt an existing conjoint-based forecasting tool (CAPMOD(tm)), (Brice et al. 2000). Our results show that there is a subset of product attributes on which physicians and patients perceive substantive differences in terms of their relative importance in their views of therapy alternatives. We also demonstrate that the observed differences in predicted share uptake between the separate, non-integrated physician and patient models and the integrated model do not necessarily follow from the observed differences in average relative importance between the two customer types, as would be the case for many existing simulation models. This additional insight into the decision-making process was possible through the use of a decision model which includes the key element of individual physician-patient linkage with an associated cut-off threshold. The paper describes the details of the approach and shows example outputs from the model. It will explore a number of interesting practical and theoretical issues that were encountered in the course of conducting this research.


Sign in / Sign up

Export Citation Format

Share Document