scholarly journals Induced Pluripotent Stem Cells to Model and Treat Neurogenetic Disorders

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Hansen Wang ◽  
Laurie C. Doering

Remarkable advances in cellular reprogramming have made it possible to generate pluripotent stem cells from somatic cells, such as fibroblasts obtained from human skin biopsies. As a result, human diseases can now be investigated in relevant cell populations derived from induced pluripotent stem cells (iPSCs) of patients. The rapid growth of iPSC technology has turned these cells into multipurpose basic and clinical research tools. In this paper, we highlight the roles of iPSC technology that are helping us to understand and potentially treat neurological diseases. Recent studies using iPSCs to model various neurogenetic disorders are summarized, and we discuss the therapeutic implications of iPSCs, including drug screening and cell therapy for neurogenetic disorders. Although iPSCs have been used in animal models with promising results to treat neurogenetic disorders, there are still many issues associated with reprogramming that must be addressed before iPSC technology can be fully exploited with translation to the clinic.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Hidetoshi Masumoto ◽  
Tadashi Ikeda ◽  
Tatsuya Shimizu ◽  
Teruo Okano ◽  
Ryuzo Sakata ◽  
...  

BACKGROUNDS: To realize cardiac regeneration with human induced pluripotent stem cells (hiPSCs), efficient differentiation from hiPSCs to defined cardiac cell populations (cardiomyocytes [CMs]/ endothelial cells [ECs]/ vascular mural cells [MCs]), and transplantation technique for fair engraftment are required. Recently, we reported that mouse ES cell-derived cardiac tissue sheet transplantation to rat myocardial infarction (MI) model ameliorated cardiac function after MI (Stem Cells, in press). Here we tried to extend this technique to hiPSCs. METHODS & RESULTS: We have reported an efficient cardiomyocyte differentiation protocol based on a monolayer culture (PLoS One, 2011), in which cardiac troponin-T (cTnT)-positive CMs robustly appeared with 50-80% efficiency. In this study, we further modified the protocol to induce vascular cells (ECs/MCs) together with CMs by vascular endothelial cell growth factor supplementation, resulted in proportional differentiation of cTnT+-CMs (62.7±11.7% of total cells), VE-cadherin+-ECs (7.8±4.9%) and PDGFRb+-MCs (18.2±11.0%) at differentiation day 15 (n=12). Then, these cells were transferred onto temperature-responsive culture dishes (UpCell dishes; CellSeed, Tokyo, Japan) to form cardiac tissue sheets including defined cardiac populations. After 4 days of culture, we successfully collected self-pulsating cardiac tissue sheets with 7.0×10 5 ±2.3 (n=12) of cells consisted of CMs (46.9±15.9% of total cells), ECs (4.1±3.7%), and MCs (22.5±15.7%). Three-layered hiPSC-derived cardiac sheets were transplanted to a MI model of athymic rat heart one week after MI. In transplantation group, echocardiogram showed a significant improvement of systolic function of left ventricle (fractional shortening: 22.6±5.0 vs 36.5±8.0%, p<0.001, n=20) and a decrease in akinetic length (20.8±9.7 vs 2.5±7.7%, p<0.001, n=20) (pre-treatment vs 4weeks after transplantation). We also succeeded in generation of larger sheets (1.6 inch diameter) with the same method. CONCLUTIONS: Transplantation of hiPSC-derived cardiac tissue sheets significantly ameliorates cardiac dysfunction after MI. Thus, we developed a valuable technological basis for hiPSC-based cardiac cell therapy.


2015 ◽  
Vol 41 (5) ◽  
pp. 405-408 ◽  
Author(s):  
A. V. Boroda ◽  
P. G. Zacharenko ◽  
M. A. Maiorova ◽  
S. E. Peterson ◽  
J. F. Loring ◽  
...  

2017 ◽  
Vol 4 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Jacob J. Hemmi ◽  
Anuja Mishra ◽  
Peter J. Hornsby

Abstract. Induced pluripotent stem cells (iPS cells) generated by cellular reprogramming from nonhuman primates (NHPs) are of great significance for regenerative medicine and for comparative biology. Autologously derived stem cells would theoretically avoid any risk of rejection due to host–donor mismatch and may bypass the need for immune suppression post-transplant. In order for these possibilities to be realized, reprogramming methodologies that were initially developed mainly for human cells must be translated to NHPs. NHP studies have typically used pluripotent cells generated from young animals and thus risk overlooking complications that may arise from generating iPS cells from donors of other ages. When reprogramming is extended to a wide range of NHP species, available donors may be middle- or old-aged. Here we have pursued these questions by generating iPS cells from donors across the life span of the common marmoset (Callithrix jacchus) and then subjecting them to a directed neural differentiation protocol. The differentiation potential of different clonal cell lines was assessed using the quantitative polymerase chain reaction. The results show that cells derived from older donors often showed less neural marker induction. These deficits were rescued by a 24 h pretreatment of the cells with 0.5 % dimethyl sulfoxide. Another NHP that plays a key role in biological research is the chimpanzee (Pan troglodytes). iPS cells generated from the chimpanzee can be of great interest in comparative in vitro studies. We investigated if similar deficits in differentiation potential might arise in chimpanzee iPS cells reprogrammed using various technologies. The results show that, while some deficits were observed in iPS cell clones generated using three different technologies, there was no clear association with the vector used. These deficits in differentiation were also prevented by a 24 h pretreatment with 0.5 % dimethyl sulfoxide.


2016 ◽  
Vol 28 (2) ◽  
pp. 242
Author(s):  
K.-H. Choi ◽  
D. Son ◽  
D.-K. Lee ◽  
J.-N. Oh ◽  
S.-H. Kim ◽  
...  

Cellular reprogramming of committed cells into a pluripotent state can be accomplished by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. However, during reprogramming, it has been verified that failures of reactivating endogenous genes and epigenetic remodelling lead to partially reprogrammed cells exhibiting features similar to those of fully reprogrammed cells. In this study, partially reprogrammed induced pluripotent stem cells (pre-iPSC) were derived from porcine fetal fibroblasts via drug-inducible vector carrying human transcription factors (OCT4, SOX2, KLF4, and MYC). Therefore, this study aimed to investigate characteristics of pre-iPSC and reprogramming mechanisms. The pre-iPSC were stably maintained over an extended period having in vitro differentiation ability into 3 germ layers. The pluripotent state of pre-iPSC was regulated by modulation of culture condition. They showed naive- or primed-like pluripotent state in leukemia inhibitory factor (LIF) or basic fibroblast growth factor (bFGF) supplemented culture conditions respectively. However, pre-iPSC could not be maintained without ectopic expression of transgenes. The cultured pre-iPSC expressed endogenous transcription factors (OCT4 and SOX2) except for NANOG known as gateway into complete reprogramming. In addition, endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN) were not sufficiently reactivated as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occurred in female pre-iPSC. Given the results, we found that expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu for achieving faithful pluripotency in pig. Accordingly, investigating pre-iPSC could help us to improve and develop reprogramming methods via understanding reprogramming mechanisms in pig. This work was supported by the Next-generation BioGreen 21 Program (PJ0113002015), Rural Development Administration, Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document