pluripotent state
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 29)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Chao Zhang ◽  
Jing Hao ◽  
Ming Shi ◽  
Yu-Xuan Li ◽  
Wang Yao ◽  
...  

Mouse embryonic stem cells (ESCs) cycle in and out of 2-cell-like (2C-like) state in culture. The molecular mechanism governing the exit of 2C-like state remains obscure, partly due to the lack of a reporter system that can genetically mark intermediate states during exiting process. Here, we identify an intermediate state that is marked by the co-expression of MERVL::tdTomato and OCT4-GFP (MERLOT) during 2C-like-to-pluripotent state transition (2CLPT). Transcriptome and epigenome analyses demonstrate that MERLOT cells cluster closely with 8-16 cell stage mouse embryos, suggesting that 2CLPT partly mimics early preimplantation development. Through a CRISPRa screen, we identify an ARRDC3-NEDD4-OCT4 regulatory axis that plays an essential role in controlling 2CLPT. Furthermore, re-evaluating previously reported 2C-like state regulators reveals dual function of Chaf1a in regulating the entry and exit of 2C-like state. Finally, ATAC-Seq footprinting analysis uncovers Klf3 as an essential transcription factor required for efficient 2CLPT. Together, our study identifies a genetically traceable intermediate state during 2CLPT and provides a valuable tool to study molecular mechanisms regulating this process.


2021 ◽  
Author(s):  
Joshua G. Dierolf ◽  
Hailey L.M. Hunter ◽  
Andrew J. Watson ◽  
Dean H Betts

Cellular metabolism plays both an active and passive role in embryonic development, pluripotency, and cell-fate decisions. However, little is known regarding the role of metabolism in regulating the recently described formative pluripotent state. The pluripotent developmental continuum features a metabolic switch from a bivalent metabolism (both glycolysis and oxidative phosphorylation) in naive cells, to predominantly glycolysis in primed cells. We investigated the role of pyruvate kinase muscle isoforms (PKM1/2) in naive, formative, and primed mouse embryonic stem cells through modulation of PKM1/2 mRNA transcripts using steric blocking morpholinos that downregulate PKM2 and upregulate PKM1. We have examined these effects in naive, formative, and primed cells by quantifying the effects of PKM1/2 modulation on pluripotent and metabolic transcripts and by measuring shifts in the population frequencies of cells expressing naive and primed cell surface markers by flow cytometry. Our results demonstrate that modulating PKM1 and PKM2 levels alters the transition from the naive state into a primed pluripotent state by enhancing the proportion of the affected cells seen in the formative state. Therefore, we conclude that PKM1/2 actively contributes to mechanisms that oversee early stem pluripotency and their progression towards a primed pluripotent state.


2021 ◽  
Author(s):  
Yosef Buganim ◽  
Moriyah Naama ◽  
Ahmed Radwan ◽  
Valery Zayat ◽  
Shulamit Sebban ◽  
...  

Recent studies demonstrated that human trophoblast stem-like cells (hTS-like cells) can be derived from naive embryonic stem cells or be induced from somatic cells by the pluripotency factors, OSKM. This raises two main questions; (i) whether human induced TSCs (hiTSCs) can be generated independently to pluripotent state or factors and (ii) what are the mechanisms by which hTSC state is established during reprogramming. Here, we identify GATA3, OCT4, KLF4 and MYC (GOKM) as a pluripotency-independent combination of factors that can generate stable and functional hiTSCs, from both male and female fibroblasts. By using single and double knockout (KO) fibroblasts for major pluripotency genes (i.e. SOX2 or NANOG/PRDM14) we show that GOKM not only is capable of generating hiTSCs from the KO cells, but rather that the efficiency of the process is increased. Through H3K4me2 and chromatin accessibility profiling we demonstrate that GOKM target different loci and genes than OSKM, and that a significant fraction of them is related to placenta and trophoblast function. Moreover, we show that GOKM exert a greater pioneer activity compared to OSKM. While GOKM target many specific hTSC loci, OSKM mainly target hTSC loci that are shared with hESCs. Finally, we reveal a gene signature of trophoblast-related genes, consisting of 172 genes which are highly expressed in blastocyst-derived TSCs and GOKM-hiTSCs but absent or mildly expressed in OSKM-hiTSCs. Taken together, these results imply that not only is the pluripotent state, and SOX2 specifically, not required to produce functional hiTSCs, but that pluripotency-specific factors actually interfere with the acquisition of the hTSC state during reprogramming.


2021 ◽  
pp. 100164
Author(s):  
Barbara Mojsa ◽  
Michael H. Tatham ◽  
Lindsay Davidson ◽  
Magda Liczmanska ◽  
Emma Branigan ◽  
...  

2021 ◽  
Vol 7 (40) ◽  
Author(s):  
Maria Vega-Sendino ◽  
Teresa Olbrich ◽  
Desiree Tillo ◽  
Andy D. Tran ◽  
Catherine N. Domingo ◽  
...  

2021 ◽  
Author(s):  
Philip A Lewis ◽  
Edina Silajdžić ◽  
Helen Smith ◽  
Nicola Bates ◽  
Christopher A Smith ◽  
...  

With a view to developing a much-needed non-invasive method for monitoring the healthy pluripotent state of human stem cells in culture, we undertook proteomic analysis of the spent medium from cultured embryonic (Man-13) and induced (Rebl.PAT) human pluripotent stem cells (hPSCs). Cells were grown in E8 medium to maintain pluripotency, and then transferred to FGF2 and TGFβ deficient media for 48 hours to replicate an early, undirected dissolution of pluripotency. We identified a distinct proteomic footprint associated with early loss of pluripotency in both hPSC lines, and a strong correlation with changes in the transcriptome. We demonstrate that multiplexing of 4 E8- against 4 E6- enriched biomarkers provides 16 ratio abundances which are each robustly diagnostic for pluripotent state. These biomarkers were further confirmed by Western blotting which demonstrated consistent correlation with the pluripotent state across cell lines, and in response to recovery assays.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingling Chen ◽  
Morgan Carlton ◽  
Xiaodan Chen ◽  
Navdeep Kaur ◽  
Hollie Ryan ◽  
...  

Abstract Background Growing evidence suggests that the pluripotent state of mesenchymal stem cells (MSCs) relies on specific local microenvironmental cues such as adhesion molecules and growth factors. Fibronectin (FN), fibroblast growth factor 2 (FGF2), and bone morphogenetic protein 4 (BMP4) are the key players in the regulation of stemness and lineage commitment of MSCs. Therefore, this study was designed to investigate the pluripotency and multilineage differentiation of bone marrow-derived MSCs (BMSCs) with the introduction of FN, FGF-2, and BMP4 and to identify the metabolic and proteomic cues involved in stemness maintenance. Methods To elucidate the stemness of BMSCs when treated with FN, FGF-2, and BMP4, the pluripotency markers of OCT4, SOX2, and c-MYC in BMSCs were monitored by real-time PCR and/or western blot. The nuclear translocation of OCT4, SOX2, and c-MYC was investigated by immunofluorescence staining. Multilineage differentiation of the treated BMSCs was determined by relevant differentiation markers. To identify the molecular signatures of BMSC stemness, gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and bioinformatics analysis were utilized to determine the metabolite and protein profiles associated with stem cell maintenance. Results Our results demonstrated that the expression of stemness markers decreased with BMSC passaging, and the manipulation of the microenvironment with fibronectin and growth factors (FGF2 and BMP4) can significantly improve BMSC stemness. Of note, we revealed 7 differentially expressed metabolites, the target genes of these metabolites may have important implications in the maintenance of BMSCs through their effects on metabolic activity, energy production, and potentially protein production. We also identified 21 differentially abundant proteins, which involved in multiple pathways, including metabolic, autophagy-related, and signaling pathways regulating the pluripotency of stem cells. Additionally, bioinformatics analysis comfirned the correlation between metabolic and proteomic profiling, suggesting that the importance of metabolism and proteome networks and their reciprocal communication in the preservation of stemness. Conclusions These results indicate that the culture environment supplemented with the culture cocktail (FN, FGF2, and BMP4) plays an essential role in shaping the pluripotent state of BMSCs. Both the metabolism and proteome networks are involved in this process and the modulation of cell-fate decision making. All these findings may contribute to the application of MSCs for regenerative medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Federico Pecori ◽  
Ikuko Yokota ◽  
Hisatoshi Hanamatsu ◽  
Taichi Miura ◽  
Chika Ogura ◽  
...  

AbstractEmbryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) recapitulate in vitro the epiblast first cell lineage decision, allowing characterization of the molecular mechanisms underlying pluripotent state transition. Here, we performed a comprehensive and comparative analysis of total glycomes of mouse ESCs and EpiLCs, revealing that overall glycosylation undergoes dramatic changes from early stages of development. Remarkably, we showed for the first time the presence of a developmentally regulated network orchestrating glycosylation changes and identified polycomb repressive complex 2 (PRC2) as a key component involved in this process. Collectively, our findings provide novel insights into the naïve-to-primed pluripotent state transition and advance the understanding of glycosylation complex regulation during early mouse embryonic development.


Author(s):  
Shaghayegh Hasanpour ◽  
Soheil Eagderi ◽  
Hadi Poorbagher ◽  
Mohammad Hasanpour

To investigate the role of maternal Activin-like factors in the preservation of stemness and mesendoderm induction, their effects were promoted and inhibited using synthetic human Activin A or SB-505124 treatments, respectively, before the maternal to zygotic transition (MZT). To study the role of zygotic Activin-like factors, SB-505124 treatment was also used after the MZT. Promoting the signaling intensity of maternal Activin-like factors led to premature differentiation, loss of stemness, and no mesendoderm malformation, while its alleviation delayed the differentiation and caused various malformations. Inhibition of the zygotic Activin-like factors was associated with suppressing the notail transcription, differentiation retardation at the oblong stage, and a broad spectrum of anomalies in a dosedependent manner. Together, promoting the signal intensity of maternal Activin-like factors drove development along with mesendodermal differentiation, while suppression of the maternal or zygotic ones maintained the pluripotent state and delayed the differentiation.


Author(s):  
Naruchit Thanuthanakhun ◽  
Masahiro Kino‐oka ◽  
Suparerk Borwornpinyo ◽  
Yuzuru Ito ◽  
Mee‐Hae Kim

Sign in / Sign up

Export Citation Format

Share Document