scholarly journals Iterative Algorithm for Solving a System of Nonlinear Matrix Equations

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Asmaa M. Al-Dubiban
2020 ◽  
Vol 18 (1) ◽  
pp. 858-872
Author(s):  
Imed Kedim ◽  
Maher Berzig ◽  
Ahdi Noomen Ajmi

Abstract Consider an ordered Banach space and f,g two self-operators defined on the interior of its positive cone. In this article, we prove that the equation f(X)=g(X) has a positive solution, whenever f is strictly \alpha -concave g-monotone or strictly (-\alpha ) -convex g-antitone with g super-homogeneous and surjective. As applications, we show the existence of positive definite solutions to new classes of nonlinear matrix equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Xuefeng Duan ◽  
Chunmei Li

Based on the alternating projection algorithm, which was proposed by Von Neumann to treat the problem of finding the projection of a given point onto the intersection of two closed subspaces, we propose a new iterative algorithm to solve the matrix nearness problem associated with the matrix equations AXB=E, CXD=F, which arises frequently in experimental design. If we choose the initial iterative matrix X0=0, the least Frobenius norm solution of these matrix equations is obtained. Numerical examples show that the new algorithm is feasible and effective.


2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Zhongli Zhou ◽  
Guangxin Huang

The general coupled matrix equations (including the generalized coupled Sylvester matrix equations as special cases) have numerous applications in control and system theory. In this paper, an iterative algorithm is constructed to solve the general coupled matrix equations over reflexive matrix solution. When the general coupled matrix equations are consistent over reflexive matrices, the reflexive solution can be determined automatically by the iterative algorithm within finite iterative steps in the absence of round-off errors. The least Frobenius norm reflexive solution of the general coupled matrix equations can be derived when an appropriate initial matrix is chosen. Furthermore, the unique optimal approximation reflexive solution to a given matrix group in Frobenius norm can be derived by finding the least-norm reflexive solution of the corresponding general coupled matrix equations. A numerical example is given to illustrate the effectiveness of the proposed iterative algorithm.


Filomat ◽  
2012 ◽  
Vol 26 (3) ◽  
pp. 607-613 ◽  
Author(s):  
Xiang Wang ◽  
Dan Liao

A hierarchical gradient based iterative algorithm of [L. Xie et al., Computers and Mathematics with Applications 58 (2009) 1441-1448] has been presented for finding the numerical solution for general linear matrix equations, and the convergent factor has been discussed by numerical experiments. However, they pointed out that how to choose a best convergence factor is still a project to be studied. In this paper, we discussed the optimal convergent factor for the gradient based iterative algorithm and obtained the optimal convergent factor. Moreover, the theoretical results of this paper can be extended to other methods of gradient-type based. Results of numerical experiments are consistent with the theoretical findings.


2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Feng Yin ◽  
Guang-Xin Huang

An iterative algorithm is constructed to solve the generalized coupled Sylvester matrix equations(AXB-CYD,EXF-GYH)=(M,N), which includes Sylvester and Lyapunov matrix equations as special cases, over generalized reflexive matricesXandY. When the matrix equations are consistent, for any initial generalized reflexive matrix pair[X1,Y1], the generalized reflexive solutions can be obtained by the iterative algorithm within finite iterative steps in the absence of round-off errors, and the least Frobenius norm generalized reflexive solutions can be obtained by choosing a special kind of initial matrix pair. The unique optimal approximation generalized reflexive solution pair[X̂,Ŷ]to a given matrix pair[X0,Y0]in Frobenius norm can be derived by finding the least-norm generalized reflexive solution pair[X̃*,Ỹ*]of a new corresponding generalized coupled Sylvester matrix equation pair(AX̃B-CỸD,EX̃F-GỸH)=(M̃,Ñ), whereM̃=M-AX0B+CY0D,Ñ=N-EX0F+GY0H. Several numerical examples are given to show the effectiveness of the presented iterative algorithm.


Sign in / Sign up

Export Citation Format

Share Document