scholarly journals Compact, Frequency Reconfigurable, Printed Monopole Antenna

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ricardo Gonçalves ◽  
Pedro Pinho ◽  
Nuno B. Carvalho

This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

2019 ◽  
Vol 4 (2019) ◽  
pp. 50-54
Author(s):  
Zaw Myo Lwin ◽  
Thae Su Aye

This paper presents a rectangular-shaped printed monopole antenna with circular polarization for Wi-Fi (2.4–2.484 GHz) and WiMAX (3.3-3.7 GHz) bands. The antenna relies on asymmetric arrangement of the patch with respect to the microstrip feed, in order to generate circular polarization. Dual-band (Wi-Fi and WiMAX) operation is enabled by inserting a slit in the corner of the ground plane. Simulation results show a bandwidth increase of 15.9% (2.2–2.58 GHz) for Wi-Fi, and of 24.16% (3.13–3.99 GHz) for WiMAX applications. Furthermore, beamwidths at the axial ratio of 3 dB equal 48˚ and 51˚ for the x-z plane and y-z planes, respectively.


Author(s):  
Khan Masood Parvez ◽  
SK. Moinul Haque ◽  
Laxmikant Minz

This paper deals with miniaturization technique based on frequency reduction using top loaded dielectric discs. In contrast to a simple monopole, the resonant frequency of monopole loaded with two dielectric discs changes from 1.98 to 1.29 GHz, resulting 34.84% reduction in resonant frequency keeping the antenna length (36.00 mm) unaltered. It is well-known fact that dielectric material can trap the energy to be delivered from source to antenna and as a result, it is unable to radiate efficiently. Then any approach to use the dielectric material for miniaturization process must, therefore, antenna coupled in such a way that it can radiate efficiently. The dielectric disc on top of monopole creates an inductive situation in a similar way to oppositely directed wire loop compensate the capacitive effect present at monopole causes the reduction in resonant frequency. This concept is implemented without sacrificing any desired features like bandwidth, radiation characteristics and efficiency (more than 98%) and analyzed with an equivalent circuit model. Experimental results illustrate good agreement with simulation results. This monopole antenna in car can be designed for GPS system, car to car communication, GSM or CDMA operation.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Dong Chen ◽  
Chen Zhang ◽  
Honglin Zhang ◽  
Chunlan Zhao

Sign in / Sign up

Export Citation Format

Share Document