microstrip feed
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 46)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Huda Ibrahim Hamd ◽  
Israa Hazem Ali ◽  
Ahmed Mohammed Ahmed

Due to the tremendous development in the field of wireless communication and its use in several fields, whether military or commercial was proposed. A novel tapered slot Vivaldi antenna is designed and simulated at double band frequency (Ku-band) using computer simulation technology (CST) software 2020. The dimensions of the antenna are 2.3 × 1 × 0.4 mm<sup>3</sup> with a microstrip feed of 0.5 mm. The proposed antenna is improved by cutting a number of circle shapes on the patch layer in different positions. The simulation results are divided into more sections according to the number of circle shapes cutting. The results are good acceptance and make the improved Vivaldi antenna valuable in many future wireless communication applications.


Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip patch antenna with triple slot for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.4 GHz & 11 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band


Author(s):  
Huiqing Zhai ◽  
Kunming Zhang ◽  
Yu Huo ◽  
Chaozong Guo

Abstract A new type of closed square ring decoupling structure is proposed in this letter, which can effectively reduce the coupling of antennas. The designed antenna is composed of two elliptical monopoles and a common ground loaded with a broadband parasitic decoupling structure. Considering the impedance matching, each antenna element is changed from the original rectangular microstrip feed to a tapered microstrip feed and etched a circular slot on the elliptical monopole patch. By comparison with the original antenna without any decoupling structure, through loading the broadband decoupling structure on the ground, the antenna isolation is improved by 10 dB in most frequency bands. Comparing simulation and measurement results, the antenna achieves better than 25 dB isolation over the whole operating band (3.3–12 GHz). By manufacturing and testing the antenna designed in this article, the excellent performance parameters obtained also prove that the antenna can be used in portable devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
S. Parameswari ◽  
C. Chitra

A new metamaterial-based UWB band-notched textile antenna for body area network (BAN) with an operational frequency range of 3 GHz to 11 GHz is created in this paper. The ultra-ide band (UWB) frequency band is covered by the antenna (3.1 GHz to 10.6 GHz). The antennas are smaller because of the usage of denim (jeans) material, which has a permittivity of 1.67. To increase the impedance transmission capacity, the ground plane is reduced to a partly rectangular conductive substance. The hexagonal cut on the bottom side is utilised to boost bandwidth by enhancing the electric field dispersion at the edges. The fabrication is built of a 1 mm thick denim (jeans) substrate, and the feed is a traditional microstrip feed. The return loss and gain characteristics of the proposed antenna are investigated. The performance of a specified antenna is investigated step by step with variable feed length, feed breadth, and substrate properties.


Author(s):  
Chandravilash Rai ◽  
Sanjai Singh ◽  
Ashutosh Kumar Singh ◽  
Ramesh Kumar Verma

Abstract A circularly polarized ring cylindrical dielectric resonator antenna (ring-CDRA) of wideband impedance bandwidth is presented in this article. The proposed ring CDRA consist of an inverted rectangular (tilted rectangular) shaped aperture and inverted L-shaped slotted microstrip feed line. The tilted rectangular shaped aperture and inverted L-shaped microstrip feed line generate two-hybrid mode HEM11δ and HEM12δ while ring CDRA and slotted microstrip feed line are used for the enhancement of impedance bandwidth. The proposed ring CDRA is resonating between 6.08 and 12.2 GHz with 66.95% (6120 MHz) impedance bandwidth. The axial ratio (AR) bandwidth of 6.99% (780 MHz) is obtained between 10.76 and 11.54 GHz with a minimum AR value of 0.2 dB at a frequency of 11 GHz. The proposed geometry of ring CDRA has been validated with measurement performed by VNA and anechoic chamber. The operating range of the proposed radiator is useful for different applications in X-band.


2021 ◽  
Vol 72 (6) ◽  
pp. 413-418
Author(s):  
Susmita Bala ◽  
P. Soni Reddy ◽  
Sushanta Sarkar ◽  
Partha Pratim Sarkar

Abstract In this research article, the design of a broadband monopole antenna with triband notch characteristics is proposed. Notch characteristics are achieved by using an E-shaped slot on the patch and a U-shaped slot on the 50 Ω microstrip feed line. An E-shaped slot is introduced on the metal patch to reject one frequency band of 6.6 − 7.5 GHz and when an additional U-shaped slot is introduced on the microstrip feed line, it provides two-notch frequency bands of 4.8 − 5.7 GHz and 14.2 − 17.5 GHz. The notch bands are effectively used to avoid undesired interference from the WLAN, C band, and Ku band. The proposed antenna provides a very broad frequency range from 3.3 − 19.5 GHz except for three notch bands. The antenna is small in size and easy to design with only a volume of 29 mm × 21mm × 1.6 mm. The antenna is useful for broadband applications.


Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip double patch antenna for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.7 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band


2021 ◽  
Vol 3 (2) ◽  
pp. 53-60
Author(s):  
Alyaa Sami Abdullah ◽  
Seham A. Hashem ◽  
Mahmood F . Mosleh

This paper proposed a Circular Polarization (CP) smartphone antenna Multiple Input Multiple Output (MIMO) system with elements of a diamond ring slot for next-generation (5G). The model's composition contains four elements. Each element has a dual-fed diamond ring slot arranged at the four smartphone corners Printed Circuit Board (PCB). A cheap FR-4 substrate with using a size of 75 x 150 mm2 as the design dielectric mater. 50-Ohm microstrip-lines T-shaped feeds the antenna ports. The orthogonal positioning of microstrip feed lines is used to achieve polarization and diversity characteristics. The paradigm results show that each port operated with an operating frequency of 3.74 GHz, with the overall system running at 3.84 GHz. Also, the results show that the MIMO system is suitable for operation in a sub-6 band that qualified for 5G smartphone applications.


Author(s):  
Suganthi Santhanam ◽  
Thiruvalar Selvan Palavesam

In this proposal new trapezoidal patch microstrip feed antenna array with ground defected by square shape is designed for detailed antenna parameter study in terms of return loss, VSWR, gain and radiation pattern for S band applications from 2 to 3 GHz. The bandwidth and radiation properties of four radiating element arranged in 2 x 2 array has been improved by defecting half of the ground by etching square shape opposite to the vertical feed point. 30 x 70 x 1.6 mm dimension structure has been fabricated in FR4 substrate for low cost applications and performance analyzed in three different planes. With comparison of four element array with full ground, the proposed array with defected ground has proved the improvement in behavior with return loss of -34.687 dB and ideally fit with VSWR of 1.038. Parametric study with feed length and substrate thickness has also been performed optimized decision of structure dimension. This study reveals that by reducing the substrate thickness and increasing the feed length, we can improve the performance of loss reduction. The front view has been simulated with full ground and defected ground for comparison and the compared results shows that the loss reduction of -22 dB has been achieved with VSWR value of 1.03 from 2.28 for defected ground structure. The designed structure has been simulated with CST software and the comparison of simulated results has conform that the proposed structure can be used for S band application like airport surveillance radars with wide bandwidth of 120 MHz and gain of 3.52 dBi. Comparison has been made between the proposed antenna array and the antennas available in literature with respect to bandwidth gain, reflection coefficient and defection type for better understanding.


Sign in / Sign up

Export Citation Format

Share Document