scholarly journals Micromechanical Thermal Assays of Ca2+-Regulated Thin-Filament Function and Modulation by Hypertrophic Cardiomyopathy Mutants of Human Cardiac Troponin

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Nicolas M. Brunet ◽  
Goran Mihajlović ◽  
Khaled Aledealat ◽  
Fang Wang ◽  
Peng Xiong ◽  
...  

Microfabricated thermoelectric controllers can be employed to investigate mechanisms underlying myosin-driven sliding of Ca2+-regulated actin and disease-associated mutations in myofilament proteins. Specifically, we examined actin filament sliding—with or without human cardiac troponin (Tn) and α-tropomyosin (Tm)—propelled by rabbit skeletal heavy meromyosin, when temperature was varied continuously over a wide range (∼20–63C°). At the upper end of this temperature range, reversible dysregulation of thin filaments occurred at pCa 9 and 5; actomyosin function was unaffected. Tn-Tm enhanced sliding speed at pCa 5 and increased a transition temperature (Tt) between a high activation energy (Ea) but low temperature regime and a lowEabut high temperature regime. This was modulated by factors that alter cross-bridge number and kinetics. Three familial hypertrophic cardiomyopathy (FHC) mutations, cTnI R145G, cTnI K206Q, and cTnT R278C, cause dysregulation at temperatures ∼5–8C°lower; the latter two increased speed at pCa 5 at all temperatures.

2016 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Marymol Koshy ◽  
Bushra Johari ◽  
Mohd Farhan Hamdan ◽  
Mohammad Hanafiah

Hypertrophic cardiomyopathy (HCM) is a global disease affecting people of various ethnic origins and both genders. HCM is a genetic disorder with a wide range of symptoms, including the catastrophic presentation of sudden cardiac death. Proper diagnosis and treatment of this disorder can relieve symptoms and prolong life. Non-invasive imaging is essential in diagnosing HCM. We present a review to deliberate the potential use of cardiac magnetic resonance (CMR) imaging in HCM assessment and also identify the risk factors entailed with risk stratification of HCM based on Magnetic Resonance Imaging (MRI).


2000 ◽  
Vol 87 (9) ◽  
pp. 805-811 ◽  
Author(s):  
Jeanne James ◽  
Yan Zhang ◽  
Hanna Osinska ◽  
Atsushi Sanbe ◽  
Raisa Klevitsky ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Fang Wang ◽  
Nicolas M. Brunet ◽  
Justin R. Grubich ◽  
Ewa A. Bienkiewicz ◽  
Thomas M. Asbury ◽  
...  

Familial hypertrophic cardiomyopathy (FHC) is a disease of cardiac sarcomeres. To identify molecular mechanisms underlying FHC pathology, functional and structural differences in three FHC-related mutations in recombinantα-Tm (V95A, D175N, and E180G) were characterized using both conventional and modified in vitro motility assays and circular dichroism spectroscopy. Mutant Tm's exhibited reducedα-helical structure and increased unordered structure. When thin filaments were fully occupied by regulatory proteins, little or no motion was detected at pCa 9, and maximum speed (pCa 5) was similar for all tropomyosins. Ca2+-responsiveness of filament sliding speed was increased either by increasedpCa50(V95A), reduced cooperativityn(D175N), or both (E180G). When temperature was increased, thin filaments with E180G exhibited dysregulation at temperatures ~10°C lower, and much closer to body temperature, than WT. When HMM density was reduced, thin filaments with D175N required fewer motors to initiate sliding or achieve maximum sliding speed.


2001 ◽  
Vol 33 (12) ◽  
pp. 2095-2107 ◽  
Author(s):  
Fumi Takahashi-Yanaga ◽  
Sachio Morimoto ◽  
Keita Harada ◽  
Reiko Minakami ◽  
Fumie Shiraishi ◽  
...  

Cardiology ◽  
2000 ◽  
Vol 93 (3) ◽  
pp. 155-162 ◽  
Author(s):  
Tong-Lang Lin ◽  
Sahoko Ichihara ◽  
Yoshiji Yamada ◽  
Tetsuo Nagasaka ◽  
Hitoshi Ishihara ◽  
...  

2002 ◽  
Vol 19 (3) ◽  
pp. 309-310 ◽  
Author(s):  
Giovanni Cuda ◽  
Andrea Mussari ◽  
Daniela Concolino ◽  
Francesco S. Costanzo ◽  
Pietro Strisciuglio

Sign in / Sign up

Export Citation Format

Share Document