scholarly journals A Cellular Automaton Traffic Flow Model with Advanced Decelerations

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yingdong Liu

A one-dimensional cellular automaton traffic flow model, which considers the deceleration in advance, is addressed in this paper. The model reflects the situation in the real traffic that drivers usually adjust the current velocity by forecasting its velocities in a short time of future, in order to avoid the sharp deceleration. The fundamental diagram obtained by simulation shows the ability of this model to capture the essential features of traffic flow, for example, synchronized flow, meta-stable state, and phase separation at the high density. Contrasting with the simulation results of the VE model, this model shows a higher maximum flux closer to the measured data, more stability, more efficient dissolving blockage, lower vehicle deceleration, and more reasonable distribution of vehicles. The results indicate that advanced deceleration has an important impact on traffic flow, and this model has some practical significance as the result matching to the actual situation.

2018 ◽  
Vol 10 (12) ◽  
pp. 4694 ◽  
Author(s):  
Xiang Wang ◽  
Po Zhao ◽  
Yanyun Tao

Overloaded heavy vehicles (HVs) have significant negative impacts on traffic conditions due to their inferior driving performance. Highway authorities need to understand the impact of overloaded HVs to assess traffic conditions and set management strategies. We propose a multi-class traffic flow model based on Smulders fundamental diagram to analyze the influence of overloaded HVs on traffic conditions. The relationship between the overloading ratio and maximum speed is established by freeway toll collection data for different types of HVs. Dynamic passenger car equivalent factors are introduced to represent the various impacts of overloaded HVs in different traffic flow patterns. The model is solved analytically and discussed in detail in the appendices. The model validation results show that the proposed model can represent traffic conditions more accurately with consideration for overloaded HVs. The scenario tests indicate that the increase of overloaded HVs leads to both a higher congestion level and longer duration.


2011 ◽  
Vol 97-98 ◽  
pp. 877-882 ◽  
Author(s):  
Wen Xing Zhu ◽  
Rui Ling Yu ◽  
Zhi Ping Jia

In this paper we investigated the stability of the traffic flow on a single lane gradient (uphill/downhill) highway. The linear stability theory was used to analyze the model and get the stability conditions. The theoretical result shows that the slope of the gradient has an influence on the stability of traffic flow. Simulations are carried out to check the slope effect of the traffic flow model. Numerical result is in good agreement with the real traffic situations.


2001 ◽  
Vol 27 (5) ◽  
pp. 719-735 ◽  
Author(s):  
J. Wahle ◽  
L. Neubert ◽  
J. Esser ◽  
M. Schreckenberg

Author(s):  
Delina Mshai Mwalimo ◽  
Mary Wainaina ◽  
Winnie Kaluki

This study outlines the Kerner’s 3 phase traffic flow theory, which states that traffic flow occurs in three phases and these are free flow, synchronized flow and wide moving jam phase. A macroscopic traffic model that is factoring road inclination is developed and its features discussed. By construction of the solution to the Rienmann problem, the model is written in conservative form and solved numerically. Using the Lax-Friedrichs method and going ahead to simulate traffic flow on an inclined multi lane road. The dynamics of traffic flow involving cars(fast moving) and trucks(slow moving) on a multi-lane inclined road is studied. Generally, trucks move slower than cars and their speed is significantly reduced when they are moving uphill on an in- clined road, which leads to emergence of a moving bottleneck. If the inclined road is multi-lane then the cars will tend to change lanes with the aim of overtaking the slow moving bottleneck to achieve free flow. The moving bottleneck and lanechange ma- noeuvres affect the dynamics of flow of traffic on the multi-lane road, leading to traffic phase transitions between free flow (F) and synchronised flow(S). Therefore, in order to adequately describe this kind of traffic flow, a model should incorporate the effect of road inclination. This study proposes to account for the road inclination through the fundamental diagram, which relates traffic flow rate to traffic density and ultimately through the anticipation term in the velocity dynamics equation of macroscopic traffic flow model. The features of this model shows how the moving bottleneck and an incline multilane road affects traffic transistions from Free flow(F) to Synchronised flow(S). For a better traffic management and control, proper understanding of traffic congestion is needed. This will help road designers and traffic engineers to verify whether traffic properties and characteristics such as speed(velocity), density and flow among others determines the effectiveness of traffic flow.


Sign in / Sign up

Export Citation Format

Share Document