scholarly journals Homoclinic Orbits for a Class of Noncoercive Discrete Hamiltonian Systems

2012 ◽  
Vol 2012 ◽  
pp. 1-21
Author(s):  
Long Yuhua

A class of first-order noncoercive discrete Hamiltonian systems are considered. Based on a generalized mountain pass theorem, some existence results of homoclinic orbits are obtained when the discrete Hamiltonian system is not periodical and need not satisfy the global Ambrosetti-Rabinowitz condition.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Xiaoping Wang

We give several sufficient conditions under which the first-order nonlinear discrete Hamiltonian systemΔx(n)=α(n)x(n+1)+β(n)|y(n)|μ-2y(n),Δy(n)=-γ(n)|x(n+1)|ν-2x(n+1)-α(n)y(n)has no solution(x(n),y(n))satisfying condition0<∑n=-∞+∞[|x(n)|ν+(1+β(n))|y(n)|μ]<+∞, whereμ,ν>1and1/μ+1/ν=1andα(n),β(n),andγ(n)are real-valued functions defined onℤ.



2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Lv ◽  
Chun-Lei Tang

We investigate the existence and multiplicity of homoclinic orbits for second-order Hamiltonian systems with local superquadratic potential by using the Mountain Pass Theorem and the Fountain Theorem, respectively.



2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Xiaoyan Lin ◽  
Qi-Ming Zhang ◽  
X. H. Tang

We give several sufficient conditions under which the first-order nonlinear Hamiltonian systemx'(t)=α(t)x(t)+f(t,y(t)),  y'(t)=-g(t,x(t))-α(t)y(t)has no solution(x(t),y(t))satisfying condition0<∫-∞+∞[|x(t)|ν+(1+β(t))|y(t)|μ]dt<+∞‍,whereμ,ν>1and(1/μ)+(1/ν)=1,0≤xf(t,x)≤β(t)|x|μ,xg(t,x)≤γ0(t)|x|ν,β(t),γ0(t)≥0, andα(t)are locally Lebesgue integrable real-valued functions defined onℝ.



2011 ◽  
Vol 141 (5) ◽  
pp. 1103-1119 ◽  
Author(s):  
X. H. Tang ◽  
Xiaoyan Lin

By using the symmetric mountain pass theorem, we establish some new existence criteria to guarantee that the second-order Hamiltonian systems ü(t) − L(t)u(t) + ∇W(t,u(t)) = 0 have infinitely many homoclinic orbits, where t ∈ ℝ, u ∈ ℝN, L ∈ C(ℝ, ℝN × N) and W ∈ C1(ℝ × ℝN, ℝ) are not periodic in t. Our results generalize and improve some existing results in the literature by relaxing the conditions on the potential function W(t, x).



Author(s):  
Paul H. Rabinowitz

SynopsisConsider the second order Hamiltonian system:where q ∊ ℝn and V ∊ C1 (ℝ ×ℝn ℝ) is T periodic in t. Suppose Vq (t, 0) = 0, 0 is a local maximum for V(t,.) and V(t, x) | x| → ∞ Under these and some additional technical assumptions we prove that (HS) has a homoclinic orbit q emanating from 0. The orbit q is obtained as the limit as k → ∞ of 2kT periodic solutions (i.e. subharmonics) qk of (HS). The subharmonics qk are obtained in turn via the Mountain Pass Theorem.





2020 ◽  
Vol 30 (09) ◽  
pp. 2050126
Author(s):  
Li Zhang ◽  
Chenchen Wang ◽  
Zhaoping Hu

From [Han et al., 2009a] we know that the highest order of the nilpotent center of cubic Hamiltonian system is [Formula: see text]. In this paper, perturbing the Hamiltonian system which has a nilpotent center of order [Formula: see text] at the origin by cubic polynomials, we study the number of limit cycles of the corresponding cubic near-Hamiltonian systems near the origin. We prove that we can find seven and at most seven limit cycles near the origin by the first-order Melnikov function.



2001 ◽  
Vol 63 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Leszek Gasiński ◽  
Nikolaos S. Papageorgiou

We consider a nonlinear hemivariational inequality with the p-Laplacian at resonance. Using an extension of the nonsmooth mountain pass theorem of Chang, which makes use of the Cerami compactness condition, we prove the existence of a nontrivial solution. Our existence results here extends a recent theorem on resonant hemivariational inequalities, by the authors in 1999.



2015 ◽  
Vol 4 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Ziheng Zhang ◽  
Rong Yuan

AbstractIn this paper we are concerned with the existence of infinitely-many solutions for fractional Hamiltonian systems of the form ${\,}_tD^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}u(t))+L(t)u(t)=\nabla W(t,u(t))$, where ${\alpha \in (\frac{1}{2},1)}$, ${t\in \mathbb {R}}$, ${u\in \mathbb {R}^n}$, ${L\in C(\mathbb {R},\mathbb {R}^{n^2})}$ is a symmetric and positive definite matrix for all ${t\in \mathbb {R}}$, ${W\in C^1(\mathbb {R}\times \mathbb {R}^n,\mathbb {R})}$ and ${\nabla W(t,u)}$ is the gradient of ${W(t,u)}$ at u. The novelty of this paper is that, assuming L(t) is bounded in the sense that there are constants ${0&lt;\tau _1&lt;\tau _2&lt; \infty }$ such that ${\tau _1 |u|^2\le (L(t)u,u)\le \tau _2 |u|^2}$ for all ${(t,u)\in \mathbb {R}\times \mathbb {R}^n}$ and ${W(t,u)}$ is of the form ${({a(t)}/({p+1}))|u|^{p+1}}$ such that ${a\in L^{\infty }(\mathbb {R},\mathbb {R})}$ can change its sign and ${0&lt;p&lt;1}$ is a constant, we show that the above fractional Hamiltonian systems possess infinitely-many solutions. The proof is based on the symmetric mountain pass theorem. Recent results in the literature are generalized and significantly improved.



2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Wenping Qin ◽  
Jian Zhang ◽  
Fukun Zhao

We study the following nonperiodic Hamiltonian systemż=JHz(t,z), whereH∈C1(R×R2N,R)is the formH(t,z)=(1/2)B(t)z⋅z+R(t,z). We introduce a new assumption onB(t)and prove that the corresponding Hamiltonian operator has only point spectrum. Moreover, by applying a generalized linking theorem for strongly indefinite functionals, we establish the existence of homoclinic orbits for asymptotically quadratic nonlinearity as well as the existence of infinitely many homoclinic orbits for superquadratic nonlinearity.



Sign in / Sign up

Export Citation Format

Share Document