scholarly journals Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Author(s):  
I. S. M. Zawawi ◽  
Z. B. Ibrahim ◽  
F. Ismail ◽  
Z. A. Majid

This paper focuses on the derivation of diagonally implicit two-point block backward differentiation formulas (DI2BBDF) for solving first-order initial value problem (IVP) with two fixed points. The method approximates the solution at two points simultaneously. The implementation and the stability of the proposed method are also discussed. A performance of the DI2BBDF is compared with the existing methods.

2001 ◽  
Vol 6 (1) ◽  
pp. 85-96
Author(s):  
H. Kalis ◽  
I. Kangro

The approximations of some heat transport problem in a thin plate are based on the finite volume and conservative averaging methods [1,2]. These procedures allow one to reduce the two dimensional heat transport problem described by a partial differential equation to an initial‐value problem for a system of two ordinary differential equations (ODEs) of the first order or to an initial‐value problem for one ordinary differential equations of the first order with one algebraic equation. Solution of the corresponding problems is obtained by using MAPLE routines “gear”, “mgear” and “lsode”.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 952
Author(s):  
Amiratul Ashikin Nasarudin ◽  
Zarina Bibi Ibrahim ◽  
Haliza Rosali

In this research, a six-order, fully implicit Block Backward Differentiation Formula with two off-step points (BBDFO(6)), for the integration of first-order ordinary differential equations (ODEs) that exhibit stiffness, is proposed. The order, consistency and stability properties of the method are discussed, and the method is found to be zero stable and consistent. Hence, the method is convergent. The numerical comparisons with the existing methods of a similar type are given to demonstrate the accuracy of the derived method.


2021 ◽  
Author(s):  
Kamoh Nathaniel ◽  
Kumleng Geoffrey ◽  
Sunday Joshua

In this paper, a collocation approach for solving initial value problem of ordinary differential equations (ODEs) of the first order is presented. This approach consists of reducing the problem to a set of linear multi-step algebraic equations by approximating the ODE with a shifted Legendre polynomial basis function to determine the unknown constants. The proposed method is simple and efficient; it approximates the solutions very closely to the closed form solutions. Some problems were considered using Maple Software to illustrate the simplicity, efficiency and accuracy of the method. The results obtained revealed that the hybrid method can be suitable candidate for all forms of first order initial value problems of ordinary differential equations.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 914
Author(s):  
Zarina Bibi Ibrahim ◽  
Amiratul Ashikin Nasarudin

Recently, block backward differentiation formulas (BBDFs) are used successfully for solving stiff differential equations. In this article, a class of hybrid block backward differentiation formulas (HBBDFs) methods that possessed A –stability are constructed by reformulating the BBDFs for the numerical solution of stiff ordinary differential equations (ODEs). The stability and convergence of the new method are investigated. The methods are found to be zero-stable and consistent, hence the method is convergent. Comparisons between the proposed method with exact solutions and existing methods of similar type show that the new extension of the BBDFs improved the stability with acceptable degree of accuracy.


1972 ◽  
Vol 15 (4) ◽  
pp. 609-611 ◽  
Author(s):  
Thomas Rogers

The classical uniqueness theorem of Nagumo [1] for ordinary differential equations is as follows.Theorem. If f(t, y) is continuous on 0≤t≤1, -∞<y<∞ and ifthen there is at most one solution to the initial value problem y'=f(t, y), y(0)=0.


Sign in / Sign up

Export Citation Format

Share Document