scholarly journals Synchronization and Pinning Control in Complex Networks with Interval Time-Varying Delay

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Hai-Feng Jiang ◽  
Tao Li

The problems on synchronization and pinning control for complex dynamical networks with interval time-varying delay are investigated and two less conservative criteria are established based on reciprocal convex technique. Pinning control strategies are designed to make the complex networks synchronized. Moreover, the problem of designing controllers can be converted into solving a series of NMIs (nonlinear matrix inequalities) and LMIs (linear matrix inequalities), which reduces the computation complexity when comparing with those present results. Finally, numerical simulations can verify the effectiveness of the derived methods.

2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
W. Weera ◽  
P. Niamsup

This paper deals with the problem of stability for a class of Lur’e systems with interval time-varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not assumed to be differentiable. We analyze the global exponential stability for uncertain neutral and Lur’e dynamical systems with some sector conditions. By constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the results.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuning Song ◽  
Yuzhong Liu

The problem of non-fragile dynamic output feedback H∞ control for a class of uncertain switched systems with time-varying delay is discussed. Firstly, the form of non-fragile dynamic output feedback H∞ controller is given. Under the condition that the upper bound of time delay and the upper bound of delay derivative are limited simultaneously, Lyapunov functional and its corresponding switching rules are constructed by using single Lyapunov function method and convex combination technique; Secondly, we use the inequality lemma to scale the derived Lyapunov functional in order to eliminate the time-varying delay term in the inequality, and then introduce the J-function to obtain a nonlinear matrix inequality that satisfies the H∞ performance index γ, we also employ Schur complement lemma to transform the nonlinear matrix inequality into set of linear matrix inequalities consisting of two linear matrix inequalities, a sufficient condition for the existence of a non-fragile dynamic output feedback H∞ controller and satisfying the H∞ performance index γ is concluded for a class of uncertain switching systems with variable time delay; Finally, a switched system composed of two subsystems is considered and the effectiveness and practicability of the theorem are illustrated by numerical simulation with LMI toolbox. 


2011 ◽  
Vol 48-49 ◽  
pp. 734-739 ◽  
Author(s):  
Dong Sheng Xu ◽  
Jun Kang Tian

This paper is concerned with delay-dependent stability for systems with interval time varying delay. By defining a new Lyapunov functional which contains a triple-integral term with the idea of decomposing the delay interval of time-varying delay, an improved criterion of asymptotic stability is derived in term of linear matrix inequalities. The criterion proves to be less conservative with fewer matrix variables than some previous ones. Finally, a numerical example is given to show the effectiveness of the proposed method.


Author(s):  
Pankaj Mukhija ◽  
Indra Narayan Kar ◽  
Rajendra K. P. Bhatt

This paper addresses the problem of absolute stability of Lurie system with interval time-varying delay. The delay range is divided into two equal segments and an appropriate Lyapunov–Krasovskii functional (LKF) is defined. A tighter bounding technique for the derivative of LKF is developed. This bounding technique in combination with the Wirtinger inequality is used to develop the absolute stability criterion in terms of linear matrix inequalities (LMIs). The stability analysis is also extended to the Lurie system with norm-bounded parametric uncertainties. The effectiveness of the proposed approach has been illustrated through a numerical example and Chua's oscillator.


Author(s):  
Abbas Zabihi Zonouz ◽  
Mohammad Ali Badamchizadeh ◽  
Amir Rikhtehgar Ghiasi

In this paper, a new method for designing controller for linear switching systems with varying delay is presented concerning the Hurwitz-Convex combination. For stability analysis the Lyapunov-Krasovskii function is used. The stability analysis results are given based on the linear matrix inequalities (LMIs), and it is possible to obtain upper delay bound that guarantees the stability of system by solving the linear matrix inequalities. Compared with the other methods, the proposed controller can be used to get a less conservative criterion and ensures the stability of linear switching systems with time-varying delay in which delay has way larger upper bound in comparison with the delay bounds that are considered in other methods. Numerical examples are given to demonstrate the effectiveness of proposed method.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2017 ◽  
Vol 11 (01) ◽  
pp. 1850007 ◽  
Author(s):  
Peerapongpat Singkibud ◽  
Kanit Mukdasai

In this paper, we investigate the problem of delay-range-dependent robust stability analysis for uncertain neutral systems with interval time-varying delays and nonlinear perturbations. The restriction on the derivative of the discrete interval time-varying delay is removed. By applying the augmented Lyapunov–Krasovskii functional approach, new improved integral inequalities, descriptor model transformation, Leibniz–Newton formula and utilization of zero equation, new delay-range-dependent robust stability criteria are derived in terms of linear matrix inequalities (LMIs) for the considered systems. Numerical examples have shown to illustrate the significant improvement on the conservatism of the delay upper bound over some reported results.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Shuguo Wang ◽  
Hongxing Yao ◽  
Qiuxiang Bian

This paper investigates the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delay and time-varying delay in dynamical nodes. Some simple and useful criteria are derived by constructing an effective control scheme and adjusting automatically the adaptive coupling strengths. To validate the proposed method, numerical simulation examples are provided to verify the correctness and effectiveness of the proposed scheme.


2013 ◽  
Vol 427-429 ◽  
pp. 1306-1310
Author(s):  
Jun Jun Hui ◽  
He Xin Zhang ◽  
Fei Meng ◽  
Xin Zhou

In this paper, we consider the problem of robust delay-dependent stability for a class of linear uncertain systems with interval time-varying delay. By using the directly Lyapunov-Krasovskii (L-K) functional method, integral inequality approach and the free weighting matrix technique, new less conservative stability criteria for the system is formulated in terms of linear matrix inequalities .Numerical examples are given to show the effectiveness of the proposed approach.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Emharuethai ◽  
P. Niamsup

H∞control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger's inequalities and some useful integral inequality.H∞controller is designed via memoryless state feedback control and new sufficient conditions for the existence of theH∞state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


Sign in / Sign up

Export Citation Format

Share Document