scholarly journals A Study of Single- and Double-Averaged Second-Order Models to Evaluate Third-Body Perturbation Considering Elliptic Orbits for the Perturbing Body

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
R. C. Domingos ◽  
A. F. Bertachini de Almeida Prado ◽  
R. Vilhena de Moraes

The equations for the variations of the Keplerian elements of the orbit of a spacecraft perturbed by a third body are developed using a single average over the motion of the spacecraft, considering an elliptic orbit for the disturbing body. A comparison is made between this approach and the more used double averaged technique, as well as with the full elliptic restricted three-body problem. The disturbing function is expanded in Legendre polynomials up to the second order in both cases. The equations of motion are obtained from the planetary equations, and several numerical simulations are made to show the evolution of the orbit of the spacecraft. Some characteristics known from the circular perturbing body are studied: circular, elliptic equatorial, and frozen orbits. Different initial eccentricities for the perturbed body are considered, since the effect of this variable is one of the goals of the present study. The results show the impact of this parameter as well as the differences between both models compared to the full elliptic restricted three-body problem. Regions below, near, and above the critical angle of the third-body perturbation are considered, as well as different altitudes for the orbit of the spacecraft.

1974 ◽  
Vol 62 ◽  
pp. 63-69 ◽  
Author(s):  
G. A. Chebotarev ◽  
N. A. Belyaev ◽  
R. P. Eremenko

In this paper the orbital evolution of Trojan asteroids are studied by integrating numerically the equations of motion over the interval 1660–2060, perturbations from Venus to Pluto being taken into account. The comparison of the actual motion of Trojans in the solar system with the theory based on the restricted three-body problem are given.


1996 ◽  
Vol 172 ◽  
pp. 187-192
Author(s):  
N. A. Solovaya ◽  
E. M. Pittich

The orbital evolutions of fictitious asteroids with high inclinations have been investigated. The selected initial orbits represent asteroids with movement, which corresponds to the conditions of the Tisserand invariant for C = C (L1) in the restricted three body problem. Initial eccentricities of the orbits cover the interval 0.0–0.4, inclinations the interval 40–80°, and arguments of perihelion the interval 0–360°. The equations of motion of the asteroids were numerically integrated from the epoch March 25, 1991 forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all planets. The orbits of the model asteroids are stable at least during the investigated period.


1983 ◽  
Vol 74 ◽  
pp. 317-323
Author(s):  
Magda Delva

AbstractIn the elliptic restricted three body problem an invariant relation between the velocity square of the third body and its potential is studied for long time intervals as well as for different values of the eccentricity. This relation, corresponding to the Jacobian integral in the circular problem, contains an integral expression which can be estimated if one assumes that the potential of the third body remains finite. Then upper and lower boundaries for the equipotential curves can be derived. For large eccentricities or long time intervals the upper boundary increases, while the lower decreases, which can be interpreted as shrinking respectively growing zero velocity curves around the primaries.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 149-156
Author(s):  
RR Thapa

The Sitnikov's problem is a special case of restricted three body problem if the primaries are of equal masses (m1 = m2 = 1/2) moving in circular orbits under Newtonian force of attraction and the third body of mass m3 moves along the line perpendicular to plane of motion of primaries. Here oblate spheroid primaries are taken. The solution of the Sitnikov's circular restricted three body problem has been checked when the primaries are oblate spheroid. We observed that solution is depended on oblate parameter A of the primaries and independent variable τ = ηt. For this the stability of non-trivial solutions with the characteristic equation is studied. The general equation of motion of the infinitesimal mass under mutual gravitational field of two oblate primaries are seen at equilibrium points. Then the stability of infinitesimal third body m3 has been calculated. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10395 BIBECHANA 11(1) (2014) 149-156


2020 ◽  
Vol 13 (39) ◽  
pp. 4168-4188
Author(s):  
A Arantza Jency

Background: The location and stability of the equilibrium points are studied for the Planar Circular Restricted Three-Body Problem where the more massive primary is an oblate spheroid. Methods: The mean motion of the equations of motion is formulated from the secular perturbations as derived by(1) and used in(2–4). The singularities of the equations of motion are found for locating the equilibrium points. Their stability is analysed using the linearized variational equations of motion at the equilibrium points. Findings: As the effect of oblateness in the mean motion expression increases, the location and stability of the equilibrium points are affected by the oblateness of the more massive primary. It is interesting to note that all the three collinear points move towards the more massive primary with oblateness. It is a new result. Among the shifts in the locations of the five equilibrium points, the y–location of the triangular equilibrium points relocate the most. It is very interesting to note that the eccentricities (e) of the orbits around L1 and L3 increase, while it decreases around L2 with the addition of oblateness with the new mean motion. The decrease in e is significant in Saturn-Mimas system from 0.95036 to 0.87558. Similarly, the value of the critical mass ratio mc, which sets the limit for the linear stability of the triangular points, further reduces significantly from 0:285: : :A1 to 0:365: : :A1 with the new mean motion. The mean motion sz in the z-direction increases significantly with the new mean motion from 9A1/4 to 9A1/2.


2021 ◽  
Vol 133 (6) ◽  
Author(s):  
Bálint Boldizsár ◽  
Tamás Kovács ◽  
József Vanyó

AbstractThe equations of motion of the planar elliptic restricted three-body problem are transformed to four decoupled Hill’s equations. By using the Floquet theorem, a perturbative solution to the oscillator equations with time-dependent periodic coefficients are presented. We clarify the transformation details that provide the applicability of the method. The form of newly derived equations inherently comprises the stability boundaries around the triangular Lagrangian points. The analytic approach is valid for system parameters $$0 < e \le 0.05$$ 0 < e ≤ 0.05 and $$0 < \mu \le 0.01$$ 0 < μ ≤ 0.01 where e denotes the eccentricity of the primaries, while $$\mu $$ μ is the mass parameter. Possible application to known extrasolar planetary systems is also demonstrated.


2017 ◽  
Vol 2 (2) ◽  
pp. 529-542 ◽  
Author(s):  
Abdullah A. Ansari

AbstractThe present paper investigates the motion of the variable infinitesimal body in circular restricted four variable bodies problem. We have constructed the equations of motion of the infinitesimal variable mass under the effect of source of radiation pressure due to which albedo effects are produced by another two primaries and one primary is considered as an oblate body which is placed at the triangular equilibrium point of the classical restricted three-body problem and also the variation of Jacobi Integral constant has been determined. We have studied numerically the equilibrium points, Poincaré surface of sections and basins of attraction in five cases (i. Third primary is placed at one of the triangular equilibrium points of the classical restricted three-body problem, ii. Variation of masses, iii. Solar radiation pressure, iv. Albedo effect, v. Oblateness effect.) by using Mathematica software. Finally, we have examined the stability of the equilibrium points and found that all the equilibrium points are unstable.


Sign in / Sign up

Export Citation Format

Share Document