scholarly journals Constraints on the NMSSM from the Oblique Parameters

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Markos Maniatis ◽  
York Schröder

Electroweak precision measurements, encoded in the oblique parameters, give strong constraints on physics beyond the Standard Model. The oblique parametersS,T,U(V,W,X)are calculated in the next-to-minimal supersymmetric model (NMSSM). We outline the calculation of the oblique parameters in terms of one-loop gauge-boson self-energies and find sensitive restrictions for the NMSSM parameter space.

2014 ◽  
Vol 31 ◽  
pp. 1460288 ◽  
Author(s):  
R. Mankel ◽  

While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Besides the Standard Model interpretation, various possibilities for extended Higgs sectors are being considered. The minimal supersymmetric extension (MSSM) features two Higgs doublets resulting in five physical Higgs bosons, which are subject to direct searches. Alternatively, more generic Two-Higgs Doublet models (2HDM) are used for the interpretation of results. The Next-to-Minimal Supersymmetric Model (NMSSM) has a more complex Higgs sector with seven physical states. Also exotic Higgs bosons decaying to invisible final states are considered. This article summarizes recent findings based on results from collider experiments.


2014 ◽  
Vol 29 (24) ◽  
pp. 1430057
Author(s):  
R. Mankel ◽  

While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Besides the Standard Model interpretation, various possibilities for extended Higgs sectors are being considered. The minimal supersymmetric extension (MSSM) features two Higgs doublets resulting in five physical Higgs bosons, which are subject to direct searches. Alternatively, more generic Two-Higgs Doublet models (2HDM) are used for the interpretation of results. The Next-to-Minimal Supersymmetric Model (NMSSM) has a more complex Higgs sector with seven physical states. Also exotic Higgs bosons decaying to invisible final states are considered. This article summarizes recent findings based on results from collider experiments.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


2018 ◽  
Vol 33 (10n11) ◽  
pp. 1830007 ◽  
Author(s):  
Agnieszka Ilnicka ◽  
Tania Robens ◽  
Tim Stefaniak

We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.


Science ◽  
2019 ◽  
Vol 365 (6458) ◽  
pp. 1156-1158 ◽  
Author(s):  
Loïc Anderegg ◽  
Lawrence W. Cheuk ◽  
Yicheng Bao ◽  
Sean Burchesky ◽  
Wolfgang Ketterle ◽  
...  

Ultracold molecules have important applications that range from quantum simulation and computation to precision measurements probing physics beyond the Standard Model. Optical tweezer arrays of laser-cooled molecules, which allow control of individual particles, offer a platform for realizing this full potential. In this work, we report on creating an optical tweezer array of laser-cooled calcium monofluoride molecules. This platform has also allowed us to observe ground-state collisions of laser-cooled molecules both in the presence and absence of near-resonant light.


2008 ◽  
Vol 23 (21) ◽  
pp. 3343-3347 ◽  
Author(s):  
JIN MIN YANG

Since the top quark FCNC processes are extremely supressed in the Standard Model (SM) but could be greatly enhanced in some new physics models, they could serve as a smoking gun for new physics hunting at the LHC. In this brief review we summarize the new physics predictions for various top quark FCNC processes at the LHC by focusing on two typical models: the minimal supersymmetric model (MSSM) and the topcolor-assisted technicolor (TC2) model. The conclusion is: (1) Both new physics models can greatly enhance the SM predictions by several orders; (2) The TC2 model allows for largest enhancement, and for each channel the maximal prediction is much larger than in the MSSM; (3) Compared with the 3σ sensitivity at the LHC, only a couple of channels are accessible for the MSSM while most channles are accesible for the TC2 model.


Author(s):  
Martino Borsato ◽  
Xabier Cid-Vidal ◽  
Yuhsin Tsai ◽  
Carlos Vázquez Sierra ◽  
Jose Francisco Zurita ◽  
...  

Abstract In this paper, we describe the potential of the LHCb experiment to detect Stealth physics. This refers to dynamics beyond the Standard Model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.


1990 ◽  
Vol 05 (26) ◽  
pp. 2087-2100 ◽  
Author(s):  
A. MÉNDEZ

The main phenomenological aspects of the Higgs bosons are briefly reviewed in the context of the Standard Model and in models with an "extended" Higgs sector. Among the latter, special emphasis is made on the Two-Doublet Model and, particularly, the Minimal Supersymmetric Model.


Sign in / Sign up

Export Citation Format

Share Document