optical tweezer
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 86)

H-INDEX

26
(FIVE YEARS 9)

2022 ◽  
Vol 9 ◽  
Author(s):  
O. V. Angelsky ◽  
A. Y. Bekshaev ◽  
C. Yu. Zenkova ◽  
D. I. Ivansky ◽  
J. Zheng ◽  
...  

The paper proposes a new approach that enables the structure analysis and reconstruction of a rough surface where the height of inhomogeneities (from the depression to the upper point) varies within the spread about 20 nm. For the surface diagnostics, carbon nanoparticles are used, which serve as sensitive probes of the local surface height. A single nanoparticle can be positioned at a desirable point of the studied surface with the help of an optical tweezer employing the He-Ne laser radiation. Then the particle is illuminated by the strongly focused exciting beam of 405 nm wavelength, with the waist plane precisely fixed at a certain distance from the surface base plane. The particle’s luminescence response (in the yellow-green spectral range) strongly depends on the distance between the exciting beam waist and the particle, thus indicating the local height of the surface. After scanning the surface area and the consecutive interpolation, the surface “vertical” landscape can be reconstructed with a high accuracy: the numerical simulation shows that the RMS surface roughness is restored with an accuracy of 6.9% while the landscape itself is reconstructed with the mean error 7.7%.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Apurba Paul ◽  
Joshua Alper

AbstractThe non-covalent biological bonds that constitute protein–protein or protein–ligand interactions play crucial roles in many cellular functions, including mitosis, motility, and cell–cell adhesion. The effect of external force ($$F$$ F ) on the unbinding rate ($${k}_{\text{off}}\left(F\right)$$ k off F ) of macromolecular interactions is a crucial parameter to understanding the mechanisms behind these functions. Optical tweezer-based single-molecule force spectroscopy is frequently used to obtain quantitative force-dependent dissociation data on slip, catch, and ideal bonds. However, analyses of this data using dissociation time or dissociation force histograms often quantitatively compare bonds without fully characterizing their underlying biophysical properties. Additionally, the results of histogram-based analyses can depend on the rate at which force was applied during the experiment and the experiment’s sensitivity. Here, we present an analytically derived cumulative distribution function-like approach to analyzing force-dependent dissociation force spectroscopy data. We demonstrate the benefits and limitations of the technique using stochastic simulations of various bond types. We show that it can be used to obtain the detachment rate and force sensitivity of biological macromolecular bonds from force spectroscopy experiments by explicitly accounting for loading rate and noisy data. We also discuss the implications of our results on using optical tweezers to collect force-dependent dissociation data.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sha An ◽  
Tong Peng ◽  
Shaohui Yan ◽  
Baoli Yao ◽  
Peng Zhang

Optical manipulation of micro-particles with nondiffracting and self-accelerating beams has been successfully applied in many research fields such as chemicophysics, material sciences and biomedicine. Such operation mainly focuses on the particle transport and control in the beam propagation direction. However, the conventional optical microscopy is specifically designed for obtaining the sample information located in the lateral plane, which is perpendicular to the optical axis of the detecting objective lens, making the real-time observation of particle dynamics in axial plane a challenge. In this work, we propose and demonstrate a technique which integrates a special beam optical tweezer with a direct axial plane imaging system. Here, particles are transported in aqueous solution along a parabolic trajectory by a designed nonparaxial Weber self-accelerating beam, and the particle motion dynamics both in lateral and axial plane are monitored in real-time by the axial plane imaging technique.


2021 ◽  
Author(s):  
Sarah Zernia ◽  
Dieter Kamp ◽  
Johannes Stigler

The genome is organized by diverse packaging mechanisms like nucleosome formation, loop extrusion and phase separation, which all compact DNA in a dynamic manner. Phase separation additionally drives protein recruitment to condensed DNA sites and thus regulates gene transcription. The cohesin complex is a key player in chromosomal organization that extrudes loops to connect distant regions of the genome and ensures sister chromatid cohesion after S-phase. For stable loading onto the DNA and for activation, cohesin requires the loading complex Scc2/4. As the precise loading mechanism remains unclear, we investigated whether phase separation might be the initializer of the cohesin recruitment process. We found that, in absence of cohesin, budding yeast Scc2/4 forms phase separated co-condensates with DNA, which comprise liquid-like properties shown by droplet shape, fusion ability and reversibility. We reveal in DNA curtain and optical tweezer experiments that these condensates are built by DNA bridging and bending through Scc2/4. Importantly, Scc2/4-mediated condensates recruit cohesin efficiently and increase the stability of the cohesin complex. We conclude that phase separation properties of Scc2/4 enhance cohesin loading by molecular crowding, which might then provide a starting point for the recruitment of additional factors and proteins.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Satish Kumar Gupta ◽  
Kyle R. Lennon ◽  
Mary A. Joens ◽  
Hari Bandi ◽  
Martijn Van Galen ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert J. C. Spreeuw

Abstract The insight that optical vortex beams carry orbital angular momentum (OAM), which emerged in Leiden about 30 years ago, has since led to an ever expanding range of applications and follow-up studies. This paper starts with a short personal account of how these concepts arose. This is followed by a description of some recent ideas where the coupling of transverse orbital and spin angular momentum (SAM) in tightly focused laser beams produces interesting new effects. The deflection of a focused light beam by an atom in the focus is reminiscent of the Magnus effect known from aerodynamics. Momentum conservation dictates an accompanying light force on the atom, transverse to the optical axis. As a consequence, an atom held in an optical tweezer will be trapped at a small distance of up to λ/2π away from the optical axis, which depends on the spin state of the atom and the magnetic field direction. This opens up new avenues to control the state of motion of atoms in optical tweezers as well as potential applications in quantum gates and interferometry.


Author(s):  
Fatemeh Bazouband ◽  
Elaheh Bazouband ◽  
Tahereh Golestanizadeh ◽  
Amirhossein Jabbar Sadooni ◽  
Maryam Mousavi Fard ◽  
...  

Abstract Functionalities of most of the metasurfaces that are investigated so far, especially in illuminations with arbitrarily linearly polarized incident light, are restricted to x- or y-polarized incoming light. In particular, filtering out one of the two orthogonal polarizations of the incoming electromagnetic wave loses the incident light energy and limits the potential performance of the metasurface. In this study, by utilizing the cross-shaped silicon metaatoms that support the simultaneous excitation of electric and magnetic dipoles under the illumination of both x- and y- orthogonal polarizations, we overcome the polarization-restricted functionality of the metalenses. By selecting the metaatoms arrangement in the metalens structure, which follows the hyperbolic phase profiles for both x- and y-polarized incoming light waves at the same time, we obtain the light intensity distribution with the extended depth of focus or enhanced intensities at the focal spot with the focusing efficiency 65% for the numerical aperture of 0.7. Utilizing metaatoms with the ability to control the two orthogonal incoming polarizations develops a new methodology for using the full potential and intensity of the arbitrary polarized incoming light. The present design concept of metaatoms has several advantages that are not limited to metalenses alone but can be applied in all metasurfaces realized to have good efficiency. Finally, the proposed metalenses are suitable for imaging, optical tweezer and lithography applications, where subwavelength light intensity distributions with extended depth of focus are the most desirable property.


2021 ◽  
Author(s):  
S. Yamini ◽  
Gunaseelan M ◽  
Ajithkumar Gangadharan ◽  
Silverio A Lopez ◽  
Karen Martirosyan ◽  
...  

Abstract The multifunctional upconversion nanoparticles are fascinating tool for biological applications. In the present work, photon upconverting NaGdF4:Yb,Er and Ag nanoparticles decorated NaGdF4:Yb,Er (NaGdF4:Yb,Er@Ag) nanoparticles were prepared using a simple polyol process. Rietveld refinement was performed for detailed crystal structural and phase fraction analysis. The morphology of the NaGdF4:Yb,Er@Ag was examined using HRTEM, which reveals silver nanoparticles of 8 nm in size were decorated over spherical shaped NaGdF4:Yb,Er nanoparticles with a mean particle size of 90 nm. The chemical compositions were confirmed by EDAX and ICP-OES analyses. The upconversion luminescence (UCL) of NaGdF4:Yb,Er at 980 nm excitation showed an intense red emission. After incorporating the silver nanoparticles, the UCL intensity decreased due to weak scattering and surface plasmon resonance effect (SPR). The VSM magnetic measurement indicates both the upconversion nanoparticles possess paramagnetic behaviour. The NaGdF4:Yb,Er@Ag showed CT imaging. MRI study exhibited better T1 weighted relaxivity in the NaGdF4:Yb,Er than the commercial Gd-DOTA. For the first time, the optical trapping was successfully demonstrated for the upconversion NaGdF4:Yb,Er nanoparticle at NIR 980 nm light using an optical tweezer setup. The optically trapped upconversion nanoparticle possessing paramagnetic property exhibited a good optical trapping stiffness. The UCL of trapped single UCNP is recorded to explore the effect of the silver nanoparticles. The multifunctional properties for the NaGdF4:Yb,Er@Ag nanoparticle are demonstrated.


2021 ◽  
Author(s):  
Apurba Paul ◽  
Joshua Alper

Abstract The non-covalent biological bonds that constitute protein-protein or protein-ligand interactions play crucial roles in many cellular functions, including mitosis, motility, and cell-cell adhesion. The effect of external force (𝐹) on the unbinding rate (𝑘off(𝐹)) of macromolecular interactions is a crucial parameter to understanding the mechanisms behind these functions. Optical tweezer-based single-molecule force spectroscopy is frequently used to obtain quantitative force-dependent dissociation data on slip, catch, and ideal bonds. However, analyses of this data using dissociation time or dissociation force histograms often quantitatively compare bonds without fully characterizing their underlying biophysical properties. Additionally, the results of histogram-based analyses can depend on the rate at which force was applied during the experiment and the experiment’s sensitivity. Here, we present an analytically derived cumulative distribution function-like approach to analyzing force-dependent dissociation force spectroscopy data. We demonstrate the benefits and limitations of the technique using stochastic simulations of various bond types. We show that it can be used to obtain the detachment rate and force sensitivity of biological macromolecular bonds from force spectroscopy experiments by explicitly accounting for loading rate and noisy data. We also discuss the implications of our results on using optical tweezers to collect force-dependent dissociation data.


Sign in / Sign up

Export Citation Format

Share Document