scholarly journals Robust Synchronization of Incommensurate Fractional-Order Chaotic Systems via Second-Order Sliding Mode Technique

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hua Chen ◽  
Wen Chen ◽  
Binwu Zhang ◽  
Haitao Cao

A second-order sliding mode (SOSM) controller is proposed to synchronize a class of incommensurate fractional-order chaotic systems with model uncertainties and external disturbances. Based on the chattering free SOSM control scheme, it can be rigorously proved that the dynamics of the synchronization error is globally asymptotically stable by using the Lyapunov stability theorem. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller design approach.

2020 ◽  
Vol 22 (6) ◽  
pp. 427-434
Author(s):  
Adil Yahdou ◽  
Abdelkadir Belhadj Djilali ◽  
Zinelaabidine Boudjema ◽  
Fayçal Mehedi

This work presents a new control strategy for counter-rotating wind turbine (CRWT) driven doubly-fed induction generator (DFIG) under grid disturbances, such as unbalanced network voltage scenarios. The proposed strategy based on the power control used dynamic gains second order sliding mode control (SOSMC). The power control of a DFIG by SOSMC widely based on the super-twisting (ST) algorithm with invariable parameters and sign functions. The proposed control method consists in using dynamic-parameters ST algorithm that ensures a better result than a conventional strategy. The proposed control scheme used 2 sliding surfaces such as reactive and active powers to control them. Also, the sign functions are replaced by saturation (sat) functions in order to minimize the chattering problems. Simulation results depicted in this research article have confirmed the good usefulness and effectiveness of the proposed adaptive super-twisting algorithm of the CRWT system during grid disturbances.


Author(s):  
Habib Benbouhenni ◽  
Zinelaabidine Boudjema ◽  
Abdelkader Belaidi

In this paper, we propose an advanced control scheme using neural second order sliding mode (NSOSMC) and adaptive neuro-fuzzy inference system space vector modulation (ANFIS-SVM) strategy for a doubly fed induction generator (DFIG) integrated into a wind turbine system (WTS). The used hybrid control system composed of artificial intelligence techniques and second-order sliding mode applied to ensure better powers performances provided by the WTS. The obtained simulation results showed that the proposed control structure has active and reactive powers with low ripples and low stator current harmonic distortion.


Sign in / Sign up

Export Citation Format

Share Document