scholarly journals Low-Rank Affinity Based Local-Driven Multilabel Propagation

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Teng Li ◽  
Bin Cheng ◽  
Xinyu Wu ◽  
Jun Wu

This paper presents a novel low-rank affinity based local-driven algorithm to robustly propagate the multilabels from training images to test images. A graph is constructed over the segmented local image regions. The labels for vertices from the training data are derived based on the context among different training images, and the derived vertex labels are propagated to the unlabeled vertices via the graph. The multitask low-rank affinity, which jointly seeks the sparsity-consistent low-rank affinities from multiple feature matrices, is applied to compute the edge weights between graph vertices. The inference process of multitask low-rank affinity is formulated as a constrained nuclear norm andℓ2,1-norm minimization problem. The optimization is conducted efficiently with the augmented Lagrange multiplier method. Based on the learned local patch labels we can predict the multilabels for the test images. Experiments on multilabel image annotation demonstrate the encouraging results from the proposed framework.

Author(s):  
Qiwei Chen ◽  
Cheng Wu ◽  
Yiming Wang

A method based on Robust Principle Component Analysis (RPCA) technique is proposed to detect small targets in infrared images. Using the low rank characteristic of background and the sparse characteristic of target, the observed image is regarded as the sum of a low-rank background matrix and a sparse outlier matrix, and then the decomposition is solved by the RPCA. The infrared small target is extracted from the single-frame image or multi-frame sequence. In order to get more efficient algorithm, the iteration process in the augmented Lagrange multiplier method is improved. The simulation results show that the method can detect out the small target precisely and efficiently.


Author(s):  
MOHAMED MAHER BEN ISMAIL ◽  
OUIEM BCHIR

In this paper, we propose a system for automatic image annotation that has two main components. The first component consists of a novel semi-supervised possibilistic clustering and feature weighting algorithm based on robust modeling of the generalized Dirichlet (GD) finite mixture. This algorithm is used to group image regions into prototypical region clusters that summarize the training data and can be used as the basis of annotating new test images. The constraints consist of pairs of image regions that should not be included in the same cluster. These constraints are deduced from the irrelevance of all concepts annotating the training images to help in guiding the clustering process. The second component of our system consists of a probabilistic model that relies on the possibilistic membership degrees, generated by the clustering algorithm, to annotate unlabeled images. The proposed system was implemented and tested on a data set that include thousands of images using four-fold cross validation.


2020 ◽  
Vol 64 (1) ◽  
pp. 10507-1-10507-9
Author(s):  
Jun Ye ◽  
Xian Zhang

Abstract Hyperspectral images (HSIs) acquired actually often contain various types of noise, such as Gaussian noise, impulse noise, and dead lines. On the basis of land covers, the spectral vectors in HSI can be separated into different classifications, which means the spectral space can be regarded as a union of several low-rank (LR) subspaces rather than a single LR subspace. Recently, LR constraint has been widely applied for denoising HSI. However, those LR-based methods do not constrain the intrinsic structure of spectral space. And these methods cannot make better use of the spatial or spectral features in an HSI cube. In this article, a framework named subspace low-rank representation combined with spatial‐spectral total variation regularization (SLRR-SSTV) is proposed for HSI denoising, where the SLRR is introduced to more precisely satisfy the low-rank property of spectral space, and the SSTV regularization is involved for the spatial and spectral smoothness enhancement. An inexact augmented Lagrange multiplier method by alternative iteration is employed for the SLRR-SSTV model solution. Both simulated and real HSI experiment results demonstrate that the proposed method can achieve a state-of-the-art performance in HSI denoising.


Author(s):  
Xiujun Zhang ◽  
Chen Xu ◽  
Min Li ◽  
Xiaoli Sun

This paper investigates how to boost region-based image segmentation by inheriting the advantages of sparse representation and low-rank representation. A novel image segmentation model, called nonconvex regularization based sparse and low-rank coupling model, is presented for such a purpose. We aim at finding the optimal solution which is provided with sparse and low-rank simultaneously. This is achieved by relaxing sparse representation problem as L1/2 norm minimization other than the L1 norm minimization, while relaxing low-rank representation problem as the S1/2 norm minimization other than the nuclear norm minimization. This coupled model can be solved efficiently through the Augmented Lagrange Multiplier (ALM) method and half-threshold operator. Compared to the other state-of-the-art methods, the new method is better at capturing the global structure of the whole data, the robustness is better and the segmentation accuracy is also competitive. Experiments on two public image segmentation databases well validate the superiority of our method.


Author(s):  
Lijuan Sun ◽  
Songhe Feng ◽  
Tao Wang ◽  
Congyan Lang ◽  
Yi Jin

Multi-Label Learning (MLL) aims to learn from the training data where each example is represented by a single instance while associated with a set of candidate labels. Most existing MLL methods are typically designed to handle the problem of missing labels. However, in many real-world scenarios, the labeling information for multi-label data is always redundant , which can not be solved by classical MLL methods, thus a novel Partial Multi-label Learning (PML) framework is proposed to cope with such problem, i.e. removing the the noisy labels from the multi-label sets. In this paper, in order to further improve the denoising capability of PML framework, we utilize the low-rank and sparse decomposition scheme and propose a novel Partial Multi-label Learning by Low-Rank and Sparse decomposition (PML-LRS) approach. Specifically, we first reformulate the observed label set into a label matrix, and then decompose it into a groundtruth label matrix and an irrelevant label matrix, where the former is constrained to be low rank and the latter is assumed to be sparse. Next, we utilize the feature mapping matrix to explore the label correlations and meanwhile constrain the feature mapping matrix to be low rank to prevent the proposed method from being overfitting. Finally, we obtain the ground-truth labels via minimizing the label loss, where the Augmented Lagrange Multiplier (ALM) algorithm is incorporated to solve the optimization problem. Enormous experimental results demonstrate that PML-LRS can achieve superior or competitive performance against other state-of-the-art methods.


2020 ◽  
Vol 2020 (10) ◽  
pp. 310-1-310-7
Author(s):  
Khalid Omer ◽  
Luca Caucci ◽  
Meredith Kupinski

This work reports on convolutional neural network (CNN) performance on an image texture classification task as a function of linear image processing and number of training images. Detection performance of single and multi-layer CNNs (sCNN/mCNN) are compared to optimal observers. Performance is quantified by the area under the receiver operating characteristic (ROC) curve, also known as the AUC. For perfect detection AUC = 1.0 and AUC = 0.5 for guessing. The Ideal Observer (IO) maximizes AUC but is prohibitive in practice because it depends on high-dimensional image likelihoods. The IO performance is invariant to any fullrank, invertible linear image processing. This work demonstrates the existence of full-rank, invertible linear transforms that can degrade both sCNN and mCNN even in the limit of large quantities of training data. A subsequent invertible linear transform changes the images’ correlation structure again and can improve this AUC. Stationary textures sampled from zero mean and unequal covariance Gaussian distributions allow closed-form analytic expressions for the IO and optimal linear compression. Linear compression is a mitigation technique for high-dimension low sample size (HDLSS) applications. By definition, compression strictly decreases or maintains IO detection performance. For small quantities of training data, linear image compression prior to the sCNN architecture can increase AUC from 0.56 to 0.93. Results indicate an optimal compression ratio for CNN based on task difficulty, compression method, and number of training images.


Author(s):  
Takeshi Teshima ◽  
Miao Xu ◽  
Issei Sato ◽  
Masashi Sugiyama

We consider the problem of recovering a low-rank matrix from its clipped observations. Clipping is conceivable in many scientific areas that obstructs statistical analyses. On the other hand, matrix completion (MC) methods can recover a low-rank matrix from various information deficits by using the principle of low-rank completion. However, the current theoretical guarantees for low-rank MC do not apply to clipped matrices, as the deficit depends on the underlying values. Therefore, the feasibility of clipped matrix completion (CMC) is not trivial. In this paper, we first provide a theoretical guarantee for the exact recovery of CMC by using a trace-norm minimization algorithm. Furthermore, we propose practical CMC algorithms by extending ordinary MC methods. Our extension is to use the squared hinge loss in place of the squared loss for reducing the penalty of overestimation on clipped entries. We also propose a novel regularization term tailored for CMC. It is a combination of two trace-norm terms, and we theoretically bound the recovery error under the regularization. We demonstrate the effectiveness of the proposed methods through experiments using both synthetic and benchmark data for recommendation systems.


2011 ◽  
Vol 268-270 ◽  
pp. 1386-1389
Author(s):  
Xiao Ying Wu ◽  
Yun Juan Liang ◽  
Li Li ◽  
Li Juan Ma

In this paper, improve the image annotation with semantic meaning, and name the new algorithm for semantic fusion of image annotation, that is a image is given to be labeled, use of training data set, the word set, and a collection of image area and other information to establish the probability model ,estimates the joint probability by word and given image areas.The probability value as the size, combined with keywords relevant table that integrates lexical semantics to extract keywords as the most representative image semantic annotation results. The algorithm can effectively use large-scale training data with rich annotation, so as to achieve better recall and precision than the existing automatic image annotation ,and validate the algorithm in the Corel data set.


2019 ◽  
Vol 5 (5) ◽  
pp. 51 ◽  
Author(s):  
Marco Donald Migliore ◽  
Fulvio Schettino ◽  
Daniele Pinchera ◽  
Mario Lucido ◽  
Gaetano Panariello

A method to filter out the contribution of interference sources in array diagnosis is proposed. The interference-affected near field measured on a surface is treated as a (complex-data) image. This allows to use some modern image processing algorithms. In particular, two strategies widely used in image processing are applied. The first one is the reduction of the amount of information by acquiring only the innovation part of an image, as currently happens in video processing. More specifically, a differential measurement technique is used to formulate the estimation of the array excitations as a sparse recovery problem. The second technique has been recently proposed in video denoising, where the image is split into a low-rank and high-rank part. In particular, in this paper the interference field is filtered out using sparsity as discriminant adopting a mixed minimum ℓ 1 norm and trace norm minimization algorithm. The methodology can be applied to both near and far field measurement ranges. It could be an alternative to the systematic use of anechoic chambers for antenna array testing.


Author(s):  
Shuang Li ◽  
Hassan Mansour ◽  
Michael B Wakin

Abstract One of the classical approaches for estimating the frequencies and damping factors in a spectrally sparse signal is the MUltiple SIgnal Classification (MUSIC) algorithm, which exploits the low-rank structure of an autocorrelation matrix. Low-rank matrices have also received considerable attention recently in the context of optimization algorithms with partial observations, and nuclear norm minimization (NNM) has been widely used as a popular heuristic of rank minimization for low-rank matrix recovery problems. On the other hand, it has been shown that NNM can be viewed as a special case of atomic norm minimization (ANM), which has achieved great success in solving line spectrum estimation problems. However, as far as we know, the general ANM (not NNM) considered in many existing works can only handle frequency estimation in undamped sinusoids. In this work, we aim to fill this gap and deal with damped spectrally sparse signal recovery problems. In particular, inspired by the dual analysis used in ANM, we offer a novel optimization-based perspective on the classical MUSIC algorithm and propose an algorithm for spectral estimation that involves searching for the peaks of the dual polynomial corresponding to a certain NNM problem, and we show that this algorithm is in fact equivalent to MUSIC itself. Building on this connection, we also extend the classical MUSIC algorithm to the missing data case. We provide exact recovery guarantees for our proposed algorithms and quantify how the sample complexity depends on the true spectral parameters. In particular, we provide a parameter-specific recovery bound for low-rank matrix recovery of jointly sparse signals rather than use certain incoherence properties as in existing literature. Simulation results also indicate that the proposed algorithms significantly outperform some relevant existing methods (e.g., ANM) in frequency estimation of damped exponentials.


Sign in / Sign up

Export Citation Format

Share Document