scholarly journals A Newton-Like Trust Region Method for Large-Scale Unconstrained Nonconvex Minimization

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yang Weiwei ◽  
Yang Yueting ◽  
Zhang Chenhui ◽  
Cao Mingyuan

We present a new Newton-like method for large-scale unconstrained nonconvex minimization. And a new straightforward limited memory quasi-Newton updating based on the modified quasi-Newton equation is deduced to construct the trust region subproblem, in which the information of both the function value and gradient is used to construct approximate Hessian. The global convergence of the algorithm is proved. Numerical results indicate that the proposed method is competitive and efficient on some classical large-scale nonconvex test problems.

2014 ◽  
Vol 19 (4) ◽  
pp. 469-490 ◽  
Author(s):  
Hamid Esmaeili ◽  
Morteza Kimiaei

In this study, we propose a trust-region-based procedure to solve unconstrained optimization problems that take advantage of the nonmonotone technique to introduce an efficient adaptive radius strategy. In our approach, the adaptive technique leads to decreasing the total number of iterations, while utilizing the structure of nonmonotone formula helps us to handle large-scale problems. The new algorithm preserves the global convergence and has quadratic convergence under suitable conditions. Preliminary numerical experiments on standard test problems indicate the efficiency and robustness of the proposed approach for solving unconstrained optimization problems.


2019 ◽  
Vol 53 (3) ◽  
pp. 829-839
Author(s):  
Saeed Rezaee ◽  
Saman Babaie-Kafaki

Based on a modified secant equation, we propose a scalar approximation of the Hessian to be used in the trust region subproblem. Then, we suggest an adaptive nonmonotone trust region algorithm with a simple quadratic model. Under proper conditions, it is briefly shown that the proposed algorithm is globally and locally superlinearly convergent. Numerical experiments are done on a set of unconstrained optimization test problems of the CUTEr collection, using the Dolan-Moré performance profile. They demonstrate efficiency of the proposed algorithm.


Author(s):  
Jie Guo ◽  
Zhong Wan

A new spectral three-term conjugate gradient algorithm in virtue of the Quasi-Newton equation is developed for solving large-scale unconstrained optimization problems. It is proved that the search directions in this algorithm always satisfy a sufficiently descent condition independent of any line search. Global convergence is established for general objective functions if the strong Wolfe line search is used. Numerical experiments are employed to show its high numerical performance in solving large-scale optimization problems. Particularly, the developed algorithm is implemented to solve the 100 benchmark test problems from CUTE with different sizes from 1000 to 10,000, in comparison with some similar ones in the literature. The numerical results demonstrate that our algorithm outperforms the state-of-the-art ones in terms of less CPU time, less number of iteration or less number of function evaluation.


2019 ◽  
Vol 12 (3) ◽  
pp. 389-399
Author(s):  
Saman Babaie-Kafaki ◽  
Saeed Rezaee

PurposeThe purpose of this paper is to employ stochastic techniques to increase efficiency of the classical algorithms for solving nonlinear optimization problems.Design/methodology/approachThe well-known simulated annealing strategy is employed to search successive neighborhoods of the classical trust region (TR) algorithm.FindingsAn adaptive formula for computing the TR radius is suggested based on an eigenvalue analysis conducted on the memoryless Broyden-Fletcher-Goldfarb-Shanno updating formula. Also, a (heuristic) randomized adaptive TR algorithm is developed for solving unconstrained optimization problems. Results of computational experiments on a set of CUTEr test problems show that the proposed randomization scheme can enhance efficiency of the TR methods.Practical implicationsThe algorithm can be effectively used for solving the optimization problems which appear in engineering, economics, management, industry and other areas.Originality/valueThe proposed randomization scheme improves computational costs of the classical TR algorithm. Especially, the suggested algorithm avoids resolving the TR subproblems for many times.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 208 ◽  
Author(s):  
Xinyi Wang ◽  
Xianfeng Ding ◽  
Quan Qu

In this paper, a new filter nonmonotone adaptive trust region with fixed step length for unconstrained optimization is proposed. The trust region radius adopts a new adaptive strategy to overcome additional computational costs at each iteration. A new nonmonotone trust region ratio is introduced. When a trial step is not successful, a multidimensional filter is employed to increase the possibility of the trial step being accepted. If the trial step is still not accepted by the filter set, it is possible to find a new iteration point along the trial step and the step length is computed by a fixed formula. The positive definite symmetric matrix of the approximate Hessian matrix is updated using the MBFGS method. The global convergence and superlinear convergence of the proposed algorithm is proven by some classical assumptions. The efficiency of the algorithm is tested by numerical results.


Sign in / Sign up

Export Citation Format

Share Document