scholarly journals A Game-Theoretic Analysis of Bandwidth Allocation under a User-Grouping Constraint

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shun-Pin Hsu ◽  
Shun-Liang Hsu ◽  
Alan Shenghan Tsai

A new bandwidth allocation model is studied in this paper. In this model, a system, such as a communication network, is composed of a finite number of users, and they compete for limited bandwidth resources. Each user adopts the decision that maximizes his or her own benefit characterized by the utility function. The decision space of each user is subject to constraints. In addition, some users form a group, and their joint decision space is also subject to constraints. Under the assumption that each user’s utility function satisfies some continuity and concavity conditions, the existence, uniqueness, and fairness, in some appropriate sense, of the Nash equilibrium point in the allocation game are proved. An algorithm yielding a sequence converging to the equilibrium point is proposed. Finally, a numerical example with detailed analysis is provided to illustrate the effectiveness of our work.

Author(s):  
Jared Soundy ◽  
Chenhao Wang ◽  
Clay Stevens ◽  
Hau Chan

Public projects can succeed or fail for many reasons such as the feasibility of the original goal and coordination among contributors. One major reason for failure is that insufficient work leaves the project partially completed. For certain types of projects anything short of full completion is a failure (e.g., feature request on software projects in GitHub). Therefore, project success relies heavily on individuals allocating sufficient effort. When there are multiple public projects, each contributor needs to make decisions to best allocate his/her limited effort (e.g., time) to projects while considering the effort allocation decisions of other strategic contributors and his/her parameterized utilities based on values and costs for the projects. In this paper, we introduce a game-theoretic effort allocation model of contributors to public projects for modeling effort allocation of strategic contributors. We study the related Nash equilibrium (NE) computational problems and provide NP-hardness results for the existence of NE and polynomial-time algorithms for finding NE in restricted settings. Finally, we investigate the inefficiency of NE measured by the price of anarchy and price of stability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maya Diamant ◽  
Shoham Baruch ◽  
Eias Kassem ◽  
Khitam Muhsen ◽  
Dov Samet ◽  
...  

AbstractThe overuse of antibiotics is exacerbating the antibiotic resistance crisis. Since this problem is a classic common-goods dilemma, it naturally lends itself to a game-theoretic analysis. Hence, we designed a model wherein physicians weigh whether antibiotics should be prescribed, given that antibiotic usage depletes its future effectiveness. The physicians’ decisions rely on the probability of a bacterial infection before definitive laboratory results are available. We show that the physicians’ equilibrium decision rule of antibiotic prescription is not socially optimal. However, we prove that discretizing the information provided to physicians can mitigate the gap between their equilibrium decisions and the social optimum of antibiotic prescription. Despite this problem’s complexity, the effectiveness of the discretization solely depends on the type of information available to the physician to determine the nature of infection. This is demonstrated on theoretic distributions and a clinical dataset. Our results provide a game-theory based guide for optimal output of current and future decision support systems of antibiotic prescription.


2021 ◽  
pp. 1-16
Author(s):  
Pieter Balcaen ◽  
Cind Du Bois ◽  
Caroline Buts

Sign in / Sign up

Export Citation Format

Share Document