scholarly journals A New Numerical Approach for the Laminar Boundary Layer Flow and Heat Transfer along a Stretching Cylinder Embedded in a Porous Medium with Variable Thermal Conductivity

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
S. Shateyi ◽  
G. T. Marewo

The study presents an axisymmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer over a stretching cylinder embedded in a porous medium. A suitable similarity transformation is employed to transform the partial differential equations corresponding to the momentum and heat equations into nonlinear ordinary differential equations. The resultant ordinary differential equations are then solved using a successive relaxation method (SRM). The effects of significant parameters on the velocity and temperature profiles have been analyzed graphically. The obtained results are also compared with previously published results in some special cases and were found to be in excellent agreement. The skin friction as well as the heat transfer rate at the surface are increased as the values of the curvature parameter increase.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Swati Mukhopadhyay

This paper presents an axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder embedded in a porous medium. The partial differential equations corresponding to the momentum and heat equations are converted into highly nonlinear ordinary differential equations with the help of similarity transformations. Numerical solutions of these equations are obtained by shooting method. It is found that the velocity decreases with increasing permeability parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to a flat plate.


2013 ◽  
Vol 18 (2) ◽  
pp. 447-459 ◽  
Author(s):  
S. Mukhopadhyay ◽  
R.S.R Gorla

An axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder is presented. Velocity slip is considered instead of the no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. It is found that the velocity decreases with increasing the slip parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to those for a flat plate.


2016 ◽  
Vol 12 (7) ◽  
pp. 6412-6421
Author(s):  
Ajala O.A ◽  
Aseelebe L. O ◽  
Ogunwobi Z. O

A steady two dimensional boundary layer flow and heat transfer with variable viscosity electrically conducting fluid at T in the presence of magnetic fields and thermal radiation was considered. The governing equations which are partial differential equations were transformed into ordinary differential equations using similarity variables, and the resulting coupled ordinary differential equations were solved using collocation method in MAPLE 18. The velocity and temperature profiles were studied graphically for different physical parameters. The effects of the parameters on velocity and temperature profile were showed.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Paresh Vyas ◽  
Nupur Srivastava

This communication pertains to the study of radiative heat transfer in boundary layer flow over an exponentially shrinking permeable sheet placed at the bottom of fluid saturated porous medium. The porous medium has permeability of specified form. The fluid considered here is Newtonian, without phase change, optically dense, absorbing-emitting radiation but a nonscattering medium. The setup is subjected to suction to contain the vorticity in the boundary layer. The radiative heat flux in the energy equation is accounted by Rosseland approximation. The thermal conductivity is presumed to vary with temperature in a linear fashion. The governing partial differential equations are reduced to ordinary differential equations by similarity transformations. The resulting system of nonlinear ordinary differential equations is solved numerically by fourth-order Runge-Kutta scheme together with shooting method. The pertinent findings displayed through figures and tables are discussed.


2016 ◽  
Vol 20 (6) ◽  
pp. 1913-1925 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Manzoor Ahmad ◽  
Muhammad Sajid

In this article unsteady three dimensional MHD boundary layer flow and heat transfer analysis with constant temperature (CT) and constant heat flux (CH) in a porous medium is considered. The boundary layer flow is governed by a bidirectional stretching sheet. Similarity transformations are used to transform the governing non-linear partial differential equations to ordinary differential equations. Analytical solutions are constructed using homotopy analysis method (HAM). Convergence analysis is also presented through tabular data. The quantities of interest are the velocity, temperature, skin friction coefficient and Nusselt number. The obtained results are validated by comparisons with previously published work in special cases. The results of this parametric study are shown graphically and the physical aspects of the problem are discussed.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Shashi Prabha Gogate S. ◽  
Bharathi M. C. ◽  
Ramesh B. Kudenatti

Abstract This paper studies the local thermal nonequilibrium (LTNE) model for two-dimensional mixed convection boundary-layer flow over a wedge, which is embedded in a porous medium in the presence of radiation and viscous dissipation. It is considered that the temperature of the fluid and solid phases is not identical; hence, we require two energy equations: one for each phase. The motion of the mainstream and wedge is approximated by the power of distance from the leading boundary layer. The flow and heat transfer in the LTNE phase is governed by the coupled partial differential equations, which are then reduced to nonlinear ordinary differential equations via suitable similarity transformations. Numerical simulations show that when the interphase rate of heat transfer is large, the system attains the local thermal equilibrium (LTE) state and so is for porosity scaled conductivity. When LTNE is strong, the fluid phase reacts faster to the mainstream temperature than the corresponding solid phase. The state of LTE rather depends on radiation and viscous dissipation of the model. Further, numerical solutions successfully predicted the upper and lower branch solutions when the velocity ratio is varied. To assess which of these solutions is practically realizable, an asymptotic analysis on unsteady perturbations for a large time leading to linear stability needs to be performed. This shows that the upper branch solutions are always stable and practically realizable. The physical dynamics behind these results are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document