scholarly journals Monotonicity, Concavity, and Convexity of Fractional Derivative of Functions

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xian-Feng Zhou ◽  
Song Liu ◽  
Zhixin Zhang ◽  
Wei Jiang

The monotonicity of the solutions of a class of nonlinear fractional differential equations is studied first, and the existing results were extended. Then we discuss monotonicity, concavity, and convexity of fractional derivative of some functions and derive corresponding criteria. Several examples are provided to illustrate the applications of our results.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Adel Al-Rabtah ◽  
Shaher Momani ◽  
Mohamed A. Ramadan

Suitable spline functions of polynomial form are derived and used to solve linear and nonlinear fractional differential equations. The proposed method is applicable for0<α≤1andα≥1, whereαdenotes the order of the fractional derivative in the Caputo sense. The results obtained are in good agreement with the exact analytical solutions and the numerical results presented elsewhere. Results also show that the technique introduced here is robust and easy to apply.


Author(s):  
Ali El Mfadel ◽  
Said Melliani ◽  
M’hamed Elomari

In this paper, we present and establish a new result on the stability analysis of solutions for fuzzy nonlinear fractional differential equations by extending Lyapunov’s direct method from the fuzzy ordinary case to the fuzzy fractional case. As an application, several examples are presented to illustrate the proposed stability result.


Analysis ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Mohammad Hossein Derakhshan ◽  
Alireza Ansari

AbstractIn this article, we study the Hyers–Ulam stability of the linear and nonlinear fractional differential equations with the Prabhakar derivative. By using the Laplace transform, we show that the introduced fractional differential equations with the Prabhakar fractional derivative is Hyers–Ulam stable. The results generalize the stability of ordinary and fractional differential equations in the Riemann–Liouville sense.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


Sign in / Sign up

Export Citation Format

Share Document