scholarly journals The Bäcklund Transformations, Exact Solutions, and Conservation Laws for the Compound Modified Korteweg-de Vries-Sine-Gordon Equations which Describe Pseudospherical Surfaces

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
S. M. Sayed

I show that the compound modified Korteweg-de Vries-Sine-Gordon equations describe pseudospherical surfaces, that is, these equations are the integrability conditions for the structural equations of such surfaces. I obtain the self-Bäcklund transformations for these equations by a geometrical method and apply the Bäcklund transformations to these solutions and generate new traveling wave solutions. Conservation laws for the latter ones are obtained using a geometrical property of these pseudospherical surfaces.

We have found new hierarchies of Korteweg–de Vries and Boussinesq equations which have multiple soliton solutions. In contrast to the stan­dard hierarchy of K. de V. equations found by Lax, these equations do not appear to fit the present inverse formalism or possess the various pro­perties associated with it such as Bäcklund transformations. The most interesting of the new K. de V. equations is ( u nx ≡ ∂ n u /∂ x n ) ( u 4 x + 30 uu 2 x + 60 u 3 ) x + u t = 0. We have proved that this equation has N -soliton solutions but we have been able to find only two soliton solutions for the rest of this hierarchy. The above equation has higher conservation laws of rank 3, 4, 6 and 7 but none of rank 2, 5 and 8 and hence it would seem that an unusual series of conservation laws exists with every third one missing. Apart from the Boussinesq equation itself, which has N -soliton solutions, ( u xx + 6 u 2 ) xx + u xx – u tt = 0 we have found only two-soliton solutions to the rest of this second class. The new equations have bounded oscillating solutions which do not occur for the K. de V. equation itself.


1992 ◽  
Vol 70 (8) ◽  
pp. 595-602 ◽  
Author(s):  
S. Roy Choudhury

Painlevé expansions, truncated at various stages, are constructed for the conditionally-Painlevé Benjamin–Bona–Mahoney (BBM), the modified Benjamin–Bona–Mahoney (MBBM), and the symmetric regularized long wave (SRLW) equations. Expansions truncated at the constant term lead to auto-Bäcklund transformations between two solutions of all three equations. Special solutions of the various equations, including a solitary-wave solution for the MBBM equation, and new one-parameter families of traveling-wave solutions for the BBM and SRLW equations are obtained using the truncated Painlevé expansions.


1982 ◽  
Vol 60 (11) ◽  
pp. 1599-1606 ◽  
Author(s):  
Henri-François Gautrin

A study of solutions of the Gel'fand–Levitan equation permits one to establish new Bäcklund transformations for the Korteweg–de Vries equation. To a specific change in the scattering parameters, there corresponds a family of Bäcklund transformations. A means to construct these transformations is presented.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050282
Author(s):  
Asıf Yokuş ◽  
Doğan Kaya

The traveling wave solutions of the combined Korteweg de Vries-modified Korteweg de Vries (cKdV-mKdV) equation and a complexly coupled KdV (CcKdV) equation are obtained by using the auto-Bäcklund Transformation Method (aBTM). To numerically approximate the exact solutions, the Finite Difference Method (FDM) is used. In addition, these exact traveling wave solutions and numerical solutions are compared by illustrating the tables and figures. Via the Fourier–von Neumann stability analysis, the stability of the FDM with the cKdV–mKdV equation is analyzed. The [Formula: see text] and [Formula: see text] norm errors are given for the numerical solutions. The 2D and 3D figures of the obtained solutions to these equations are plotted.


2000 ◽  
Vol 24 (6) ◽  
pp. 371-377 ◽  
Author(s):  
Kenneth L. Jones ◽  
Xiaogui He ◽  
Yunkai Chen

This paper is concerned with periodic traveling wave solutions of the forced generalized nearly concentric Korteweg-de Vries equation in the form of(uη+u/(2η)+[f(u)]ξ+uξξξ)ξ+uθθ/η2=h0. The authors first convert this equation into a forced generalized Kadomtsev-Petviashvili equation,(ut+[f(u)]x+uxxx)x+uyy=h0, and then to a nonlinear ordinary differential equation with periodic boundary conditions. An equivalent relationship between the ordinary differential equation and nonlinear integral equations with symmetric kernels is established by using the Green's function method. The integral representations generate compact operators in a Banach space of real-valued continuous functions. The Schauder's fixed point theorem is then used to prove the existence of nonconstant solutions to the integral equations. Therefore, the existence of periodic traveling wave solutions to the forced generalized KP equation, and hence the nearly concentric KdV equation, is proved.


2018 ◽  
Vol 73 (3) ◽  
pp. 207-213 ◽  
Author(s):  
Rehab M. El-Shiekh

AbstractIn this paper, the integrability of the (2+1)-dimensional cylindrical modified Korteweg-de Vries equation and the (3+1)-dimensional cylindrical Korteweg-de Vries equation with variable coefficients arising in dusty plasmas in its generalised form was studied by two different techniques: the Painlevé test and the consistent Riccati expansion solvability. The integrability conditions and Bäcklund transformations are constructed. By using Bäcklund transformations and the solutions of the Riccati equation many new exact solutions are found for the two equations in this study. Finally, the application of the obtained solutions in dusty plasmas is investigated.


Sign in / Sign up

Export Citation Format

Share Document