Delayed Reaction–Diffusion Cellular Neural Networks of Fractional Order: Mittag–Leffler Stability and Synchronization

Author(s):  
Ivanka M. Stamova ◽  
Stanislav Simeonov

This research introduces a model of a delayed reaction–diffusion fractional neural network with time-varying delays. The Mittag–Leffler-type stability of the solutions is investigated, and new sufficient conditions are established by the use of the fractional Lyapunov method. Mittag–Leffler-type synchronization criteria are also derived. Three illustrative examples are established to exhibit the proposed sufficient conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guowei Yang ◽  
Yonggui Kao ◽  
Changhong Wang

This paper considers dynamical behaviors of a class of fuzzy impulsive reaction-diffusion delayed cellular neural networks (FIRDDCNNs) with time-varying periodic self-inhibitions, interconnection weights, and inputs. By using delay differential inequality,M-matrix theory, and analytic methods, some new sufficient conditions ensuring global exponential stability of the periodic FIRDDCNN model with Neumann boundary conditions are established, and the exponential convergence rate index is estimated. The differentiability of the time-varying delays is not needed. An example is presented to demonstrate the efficiency and effectiveness of the obtained results.



2021 ◽  
pp. 1-11
Author(s):  
Wenbin Jin ◽  
Wenxia Cui ◽  
Zhenjie Wang

Finite-time synchronization is concerned for the fractional-order complex-valued fuzzy cellular neural networks (FOCVFCNNs) with leakage delay and time-varying delays. Without using the usual complex-valued system decomposition method, this paper designs the different forms of the controllers by using 2-norm. And we construct the appropriate Lyapunov functional and apply inequality analytical techniques, some new sufficient conditions are obtained to ensure finite-time synchronization of the FOCVFCNNs. The upper bound of setting-time function is obtained. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xianghong Lai ◽  
Tianxiang Yao

This work is devoted to the stability study of impulsive cellular neural networks with time-varying delays and reaction-diffusion terms. By means of new Poincaré integral inequality and Gronwall-Bellman-type impulsive integral inequality, we summarize some novel and concise sufficient conditions ensuring the global exponential stability of equilibrium point. The provided stability criteria are applicable to Dirichlet boundary condition and show that not only the reaction-diffusion coefficients but also the regional features including the boundary and dimension of spatial variable can influence the stability. Two examples are finally illustrated to demonstrate the effectiveness of our obtained results.



Author(s):  
Ramziya Rifhat ◽  
Ahmadjan Muhammadhaji ◽  
Zhidong Teng

AbstractIn this paper, we investigate the synchronization problem of impulsive fractional-order neural networks with both time-varying and distributed delays. By using the fractional Lyapunov method and Mittag–Leffler function, some sufficient conditions are derived to realize the global Mittag–Leffler synchronization of impulsive fractional-order neural networks and one illustrative example is given to demonstrate the effectiveness of the obtained results.



2016 ◽  
Vol 30 (18) ◽  
pp. 1650271 ◽  
Author(s):  
Xueli Cui ◽  
Yongguang Yu ◽  
Hu Wang ◽  
Wei Hu

In this paper, the memristor-based fractional-order neural networks with time delay are analyzed. Based on the theories of set-value maps, differential inclusions and Filippov’s solution, some sufficient conditions for asymptotic stability of this neural network model are obtained when the external inputs are constants. Besides, uniform stability condition is derived when the external inputs are time-varying, and its attractive interval is estimated. Finally, numerical examples are given to verify our results.



2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Yutian Zhang

This work addresses the asymptotic stability for a class of impulsive cellular neural networks with time-varying delays and reaction-diffusion. By using the impulsive integral inequality of Gronwall-Bellman type and Hardy-Sobolev inequality as well as piecewise continuous Lyapunov functions, we summarize some new and concise sufficient conditions ensuring the global exponential asymptotic stability of the equilibrium point. The provided stability criteria are applicable to Dirichlet boundary condition and showed to be dependent on all of the reaction-diffusion coefficients, the dimension of the space, the delay, and the boundary of the spatial variables. Two examples are finally illustrated to demonstrate the effectiveness of our obtained results.



Author(s):  
Qianhong Zhang ◽  
Lihui Yang ◽  
Daixi Liao

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.



2020 ◽  
Vol 53 (3-4) ◽  
pp. 378-389 ◽  
Author(s):  
Weiyuan Zhang ◽  
Junmin Li ◽  
Jinghan Sun ◽  
Minglai Chen

In this paper, we deal with the adaptive stochastic synchronization for a class of delayed reaction–diffusion neural networks. By combing Lyapunov–Krasovskii functional, drive-response concept, the adaptive feedback control scheme, and linear matrix inequality method, we derive some sufficient conditions in terms of linear matrix inequalities ensuring the stochastic synchronization of the addressed neural networks. The output coupling with delay feedback and the update laws of parameters for adaptive feedback control are proposed, which will be of significance in the real application. The novel Lyapunov–Krasovskii functional to be constructed is more general. The derived results depend on the measure of the space, diffusion effects, and the upper bound of derivative of time-delay. Finally, an illustrated example is presented to show the effectiveness and feasibility of the proposed scheme.



Sign in / Sign up

Export Citation Format

Share Document