scholarly journals Optimal Short-Time Acquisition Schemes in High Angular Resolution Diffusion-Weighted Imaging

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
V. Prčkovska ◽  
H. C. Achterberg ◽  
M. Bastiani ◽  
P. Pullens ◽  
E. Balmashnova ◽  
...  

This work investigates the possibilities of applying high-angular-resolution-diffusion-imaging- (HARDI-) based methods in a clinical setting by investigating the performance of non-Gaussian diffusion probability density function (PDF) estimation for a range ofb-values and diffusion gradient direction tables. It does so at realistic SNR levels achievable in limited time on a high-performance 3T system for the whole human brainin vivo. We use both computational simulations andin vivobrain scans to quantify the angular resolution of two selected reconstruction methods: Q-ball imaging and the diffusion orientation transform. We propose a new analytical solution to the ODF derived from the DOT. Both techniques are analytical decomposition approaches that require identical acquisition and modest postprocessing times and, given the proposed modifications of the DOT, can be analyzed in a similar fashion. We find that an optimal HARDI protocol given a stringent time constraint (<10 min) combines a moderateb-value (around 2000 s/mm2) with a relatively low number of acquired directions (>48). Our findings generalize to other methods and additional improvements in MR acquisition techniques.

2015 ◽  
Author(s):  
Patrick Beukema ◽  
Timothy Verstynen ◽  
Fang-Cheng Yeh

Projections from the substantia nigra and striatum traverse through the pallidum on the way to their targets. To date, in vivo characterization of these pathways remains elusive. Here we used high angular resolution diffusion imaging (N=138) to study the characteristics and structural subcompartments of the human pallidum. Our results show that the diffusion orientation distribution at the pallidum is asymmetrically oriented in a dorsolateral direction, consistent with the orientation of underlying fiber systems. Furthermore, compared to the outer pallidal segment, the internal segment has more peaks in the orientation distribution function and stronger anisotropy in the primary fiber direction, consistent with known cellular differences between the underlying nuclei. These differences in orientation, complexity, and degree of anisotropy are sufficiently robust to automatically segment the pallidal nuclei using diffusion properties. Thus the gray matter diffusion signal can be useful as an in vivo measure of the collective nigrostriatal and striatonigral pathways.


2020 ◽  
Vol 85 (3) ◽  
pp. 1397-1413
Author(s):  
Maarten Naeyaert ◽  
Jan Aelterman ◽  
Johan Van Audekerke ◽  
Vladimir Golkov ◽  
Daniel Cremers ◽  
...  

2012 ◽  
Vol 51 (05) ◽  
pp. 441-448 ◽  
Author(s):  
P. F. Neher ◽  
I. Reicht ◽  
T. van Bruggen ◽  
C. Goch ◽  
M. Reisert ◽  
...  

SummaryBackground: Diffusion-MRI provides a unique window on brain anatomy and insights into aspects of tissue structure in living humans that could not be studied previously. There is a major effort in this rapidly evolving field of research to develop the algorithmic tools necessary to cope with the complexity of the datasets.Objectives: This work illustrates our strategy that encompasses the development of a modularized and open software tool for data processing, visualization and interactive exploration in diffusion imaging research and aims at reinforcing sustainable evaluation and progress in the field.Methods: In this paper, the usability and capabilities of a new application and toolkit component of the Medical Imaging and Interaction Toolkit (MITK, www.mitk.org), MITKDI, are demonstrated using in-vivo datasets.Results: MITK-DI provides a comprehensive software framework for high-performance data processing, analysis and interactive data exploration, which is designed in a modular, extensible fashion (using CTK) and in adherence to widely accepted coding standards (e.g. ITK, VTK). MITK-DI is available both as an open source software development toolkit and as a ready-to-use in stallable application.Conclusions: The open source release of the modular MITK-DI tools will increase verifiability and comparability within the research community and will also be an important step towards bringing many of the current techniques towards clinical application.


2005 ◽  
Vol 54 (6) ◽  
pp. 1480-1489 ◽  
Author(s):  
Tim Hosey ◽  
Guy Williams ◽  
Richard Ansorge

2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Adelino R. Ferreira da Silva

We present a new methodology based on directional data clustering to represent white matter fiber orientations in magnetic resonance analyses for high angular resolution diffusion imaging. A probabilistic methodology is proposed for estimating intravoxel principal fiber directions, based on clustering directional data arising from orientation distribution function (ODF) profiles. ODF reconstructions are used to estimate intravoxel fiber directions using mixtures of von Mises-Fisher distributions. The method focuses on clustering data on the unit sphere, where complexity arises from representing ODF profiles as directional data. The proposed method is validated on synthetic simulations, as well as on a real data experiment. Based on experiments, we show that by clustering profile data using mixtures of von Mises-Fisher distributions it is possible to estimate multiple fiber configurations in a more robust manner than currently used approaches, without recourse to regularization or sharpening procedures. The method holds promise to support robust tractographic methodologies and to build realistic models of white matter tracts in the human brain.


Sign in / Sign up

Export Citation Format

Share Document