scholarly journals Safety Analysis Using Lebesgue Strain Measure of Thick-Walled Cylinder for Functionally Graded Material under Internal and External Pressure

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. K. Aggarwal ◽  
Richa Sharma ◽  
Sanjeev Sharma

Safety analysis has been done for thick-walled circular cylinder under internal and external pressure using transition theory which is based on the concept of generalized principal Lebesgue strain measure. Results have been analyzed theoretically and discussed numerically. From the analysis, it can be concluded that circular cylinder made of functionally graded material is on the safer side of the design as compared to homogeneous cylinder with internal and external pressure, which leads to the idea of “stress saving” that minimizes the possibility of fracture of cylinder.

2011 ◽  
Vol 94-96 ◽  
pp. 2009-2014
Author(s):  
Yun Qian Xu ◽  
Ai Zhong Lu ◽  
Ning Zhang ◽  
Pan Cui

In order to improve the ultimate bearing capacity, In this paper, the theory of functionally graded material is introduced. This paper simulate thick-walled cylinder with functionally graded characteristics through the analysis of using different reinforced ways along the radial direction. The author analyzes the stress state of the thick-walled cylinder with plain concrete and three different reinforced ways under the radical uniform load. Comparisons and evaluations are provided based on ANSYS results. The paper provide a reasonable reinforced way that is a larger reinforcement ratio near the outer and a smaller reinforcement ratio near the inner and is different with the traditional way. But the worst reinforcement arrangement is that a larger reinforcement ratio near the inner and a smaller reinforcement ratio near the outer. The conclusion shows that the principle that larger reinforcement ratio should be adopted where the tangential stress is larger is not suitable to the thick-walled cylinder.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
A. K. Aggarwal ◽  
Richa Sharma ◽  
Sanjeev Sharma

The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure.


2021 ◽  
Vol 16 ◽  
pp. 232-244
Author(s):  
Sandeep Kumar Paul ◽  
Manoj Sahni

In this paper, variable thickness disk made up of functionally graded material (FGM) under internal and external pressure is analyzed using a simple iteration technique. Thickness of FGM disk and the material property, namely, Young’s modulus are varying exponentially in radial direction. Poisson’s ratio is considered invariant for the material. Navier equation is used to formulate the problem in the differential equation form under plane stress condition. Displacement, stresses, and strains are obtained under the influence of material gradation and variable thickness. Three different material combinations are considered for the FGM disk. The mechanical response of disk obtained for different functionally graded material combinations are compared with the homogenous disk, and results are plotted graphically


Sign in / Sign up

Export Citation Format

Share Document