Study on the Best Reinforcement Arrangement of Thick-Walled Cylinder

2011 ◽  
Vol 94-96 ◽  
pp. 2009-2014
Author(s):  
Yun Qian Xu ◽  
Ai Zhong Lu ◽  
Ning Zhang ◽  
Pan Cui

In order to improve the ultimate bearing capacity, In this paper, the theory of functionally graded material is introduced. This paper simulate thick-walled cylinder with functionally graded characteristics through the analysis of using different reinforced ways along the radial direction. The author analyzes the stress state of the thick-walled cylinder with plain concrete and three different reinforced ways under the radical uniform load. Comparisons and evaluations are provided based on ANSYS results. The paper provide a reasonable reinforced way that is a larger reinforcement ratio near the outer and a smaller reinforcement ratio near the inner and is different with the traditional way. But the worst reinforcement arrangement is that a larger reinforcement ratio near the inner and a smaller reinforcement ratio near the outer. The conclusion shows that the principle that larger reinforcement ratio should be adopted where the tangential stress is larger is not suitable to the thick-walled cylinder.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. K. Aggarwal ◽  
Richa Sharma ◽  
Sanjeev Sharma

Safety analysis has been done for thick-walled circular cylinder under internal and external pressure using transition theory which is based on the concept of generalized principal Lebesgue strain measure. Results have been analyzed theoretically and discussed numerically. From the analysis, it can be concluded that circular cylinder made of functionally graded material is on the safer side of the design as compared to homogeneous cylinder with internal and external pressure, which leads to the idea of “stress saving” that minimizes the possibility of fracture of cylinder.


2016 ◽  
Vol 58 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Noha Fouda

Author(s):  
Md. Imran Ali ◽  
Mohammad Sikandar Azam

This paper presents the formulation of dynamic stiffness matrix for the natural vibration analysis of porous power-law functionally graded Levy-type plate. In the process of formulating the dynamic stiffness matrix, Kirchhoff-Love plate theory in tandem with the notion of neutral surface has been taken on board. The developed dynamic stiffness matrix, a transcendental function of frequency, has been solved through the Wittrick–Williams algorithm. Hamilton’s principle is used to obtain the equation of motion and associated natural boundary conditions of porous power-law functionally graded plate. The variation across the thickness of the functionally graded plate’s material properties follows the power-law function. During the fabrication process, the microvoids and pores develop in functionally graded material plates. Three types of porosity distributions are considered in this article: even, uneven, and logarithmic. The eigenvalues computed by the dynamic stiffness matrix using Wittrick–Williams algorithm for isotropic, power-law functionally graded, and porous power-law functionally graded plate are juxtaposed with previously referred results, and good agreement is found. The significance of various parameters of plate vis-à-vis aspect ratio ( L/b), boundary conditions, volume fraction index ( p), porosity parameter ( e), and porosity distribution on the eigenvalues of the porous power-law functionally graded plate is examined. The effect of material density ratio and Young’s modulus ratio on the natural vibration of porous power-law functionally graded plate is also explained in this article. The results also prove that the method provided in the present work is highly accurate and computationally efficient and could be confidently used as a reference for further study of porous functionally graded material plate.


Sign in / Sign up

Export Citation Format

Share Document