scholarly journals Nonlinear Stability and Convergence of Two-Step Runge-Kutta Methods for Volterra Delay Integro-Differential Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Haiyan Yuan ◽  
Cheng Song

This paper introduces the stability and convergence of two-step Runge-Kutta methods with compound quadrature formula for solving nonlinear Volterra delay integro-differential equations. First, the definitions of(k,l)-algebraically stable and asymptotically stable are introduced; then the asymptotical stability of a(k,l)-algebraically stable two-step Runge-Kutta method with0<k<1is proved. For the convergence, the concepts ofD-convergence, diagonally stable, and generalized stage order are firstly introduced; then it is proved by some theorems that if a two-step Runge-Kutta method is algebraically stable and diagonally stable and its generalized stage order isp, then the method with compound quadrature formula isD-convergent of order at leastmin{p,ν}, whereνdepends on the compound quadrature formula.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Haiyan Yuan ◽  
Cheng Song ◽  
Peichen Wang

This paper is devoted to the stability and convergence analysis of the two-step Runge-Kutta (TSRK) methods with the Lagrange interpolation of the numerical solution for nonlinear neutral delay differential equations. Nonlinear stability and D-convergence are introduced and proved. We discuss theGR(l)-stability,GAR(l)-stability, and the weakGAR(l)-stability on the basis of(k,l)-algebraically stable of the TSRK methods; we also discuss the D-convergence properties of TSRK methods with a restricted type of interpolation procedure.


2020 ◽  
Vol 17 (1) ◽  
pp. 0166
Author(s):  
Hussain Et al.

A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.


2012 ◽  
Author(s):  
Fudziah Ismail ◽  
San Lwin Aung ◽  
Mohamed Suleiman

Persamaan pembezaan lengah linear (PPL) diselesaikan dengan kaedah Runge–Kutta menggunakan interpolasi yang berbeza bagi penghampiran sebutan lengahnya. Polinomial kestabilannya diterbitkan dan rantau kestabilannya dipersembahkan. Kata kunci: Runge-Kutta, persamaan pembezaan lengah, kestabilan, interpolasi The linear delay differential equations (DDEs) are solved by Runge–Kutta method using different types of interpolation to approximate the delay terms. The stability polynomials are derived and the respective regions of stability are presented. Key words: Runge-Kutta, delay differential equations, stability, interpolation


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Haiyan Yuan ◽  
Jingjun Zhao ◽  
Yang Xu

This paper is devoted to the stability and convergence analysis of the Additive Runge-Kutta methods with the Lagrangian interpolation (ARKLMs) for the numerical solution of multidelay-integro-differential equations (MDIDEs). GDN-stability and D-convergence are introduced and proved. It is shown that strongly algebraically stability gives D-convergence, DA- DAS- and ASI-stability give GDN-stability. A numerical example is given to illustrate the theoretical results.


2021 ◽  
pp. 101554
Author(s):  
Tomasz Bochacik ◽  
Maciej Goćwin ◽  
Paweł M. Morkisz ◽  
Paweł Przybyłowicz

Sign in / Sign up

Export Citation Format

Share Document