scholarly journals Homotopy Analysis Method for Boundary-Value Problem of Turbo Warrant Pricing under Stochastic Volatility

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hoi Ying Wong ◽  
Mei Choi Chiu

Turbo warrants are liquidly traded financial derivative securities in over-the-counter and exchange markets in Asia and Europe. The structure of turbo warrants is similar to barrier options, but a lookback rebate will be paid if the barrier is crossed by the underlying asset price. Therefore, the turbo warrant price satisfies a partial differential equation (PDE) with a boundary condition that depends on another boundary-value problem (BVP) of PDE. Due to the highly complicated structure of turbo warrants, their valuation presents a challenging problem in the field of financial mathematics. This paper applies the homotopy analysis method to construct an analytic pricing formula for turbo warrants under stochastic volatility in a PDE framework.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Monireh Nosrati Sahlan ◽  
Hojjat Afshari

AbstractThree new and applicable approaches based on quasi-linearization technique, wavelet-homotopy analysis method, spectral methods, and converting two-point boundary value problem to Fredholm–Urysohn integral equation are proposed for solving a special case of strongly nonlinear two-point boundary value problems, namely Troesch problem. A quasi-linearization technique is utilized to reduce the nonlinear boundary value problem to a sequence of linear equations in the first method. Second method is devoted to applying generalized Coiflet scaling functions based on the homotopy analysis method for approximating the numerical solution of Troesch equation. In the third method we use an interesting technique to convert the boundary value problem to Urysohn–Fredholm integral equation of the second kind; afterwards generalized Coiflet scaling functions and Simpson quadrature are employed for solving the obtained integral equation. Introduced methods are new and computationally attractive, and applications are demonstrated through illustrative examples. Comparing the results of the presented methods with the results of some other existing methods for solving this kind of equations implies the high accuracy and efficiency of the suggested schemes.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1167
Author(s):  
Said Mesloub ◽  
Saleem Obaidat

The main purpose of this paper is to obtain some numerical results via the homotopy analysis method for an initial-boundary value problem for a fractional order diffusion equation with a non-local constraint of integral type. Some examples are provided to illustrate the efficiency of the homotopy analysis method (HAM) in solving non-local time-fractional order initial-boundary value problems. We also give some improvements for the proof of the existence and uniqueness of the solution in a fractional Sobolev space.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shahid S. Siddiqi ◽  
Muzammal Iftikhar

The aim of this paper is to use the homotopy analysis method (HAM), an approximating technique for solving linear and nonlinear higher order boundary value problems. Using HAM, approximate solutions of seventh-, eighth-, and tenth-order boundary value problems are developed. This approach provides the solution in terms of a convergent series. Approximate results are given for several examples to illustrate the implementation and accuracy of the method. The results obtained from this method are compared with the exact solutions and other methods (Akram and Rehman (2013), Farajeyan and Maleki (2012), Geng and Li (2009), Golbabai and Javidi (2007), He (2007), Inc and Evans (2004), Lamnii et al. (2008), Siddiqi and Akram (2007), Siddiqi et al. (2012), Siddiqi et al. (2009), Siddiqi and Iftikhar (2013), Siddiqi and Twizell (1996), Siddiqi and Twizell (1998), Torvattanabun and Koonprasert (2010), and Kasi Viswanadham and Raju (2012)) revealing that the present method is more accurate.


Sign in / Sign up

Export Citation Format

Share Document