scholarly journals An Efficient Method for Systems of Variable Coefficient Coupled Burgers’ Equation with Time-Fractional Derivative

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Hossein Aminikhah ◽  
Nasrin Malekzadeh

A new homotopy perturbation method (NHPM) is applied to system of variable coefficient coupled Burgers' equation with time-fractional derivative. The fractional derivatives are described in the Caputo fractional derivative sense. The concept of new algorithm is introduced briefly, and NHPM is examined for two systems of nonlinear Burgers' equation. In this approach, the solution is considered as a power series expansion that converges rapidly to the nonlinear problem. The new approximate analytical procedure depends on two iteratives. The modified algorithm provides approximate solutions in the form of convergent series with easily computable components. Results indicate that the introduced method is promising for solving other types of systems of nonlinear fractional-order partial differential equations.

Author(s):  
Najeeb Alam Khan ◽  
Asmat Ara ◽  
Amir Mahmood

In this paper, we present the approximate solutions of the time fractional chemical engineering equations by means of the variational iteration method (VIM) and homotopy perturbation method (HPM). The fractional derivatives are described in the Caputo sense. The solutions of the chemical reactor, reaction, and concentration equations are calculated in the form of convergent series with easily computable components. We compared the HPM against the VIM; an additional comparison will be made against the conventional numerical method. The results show that HPM is more promising, convenient, and efficient than VIM.


2019 ◽  
Vol 4 (2) ◽  
pp. 523-534 ◽  
Author(s):  
Ali Kurt ◽  
Mehmet Şenol ◽  
Orkun Tasbozan ◽  
Mehar Chand

AbstractIn this article, we attain new analytical solution sets for nonlinear time-fractional coupled Burgers’ equations which arise in polydispersive sedimentation in shallow water waves using exp-function method. Then we apply a semi-analytical method namely perturbation-iteration algorithm (PIA) to obtain some approximate solutions. These results are compared with obtained exact solutions by tables and surface plots. The fractional derivatives are evaluated in the conformable sense. The findings reveal that both methods are very effective and dependable for solving partial fractional differential equations.


2016 ◽  
Vol 12 (4) ◽  
pp. 6133-6138
Author(s):  
Khadijah Abu Alnaja

In this paper, the homotopy perturbation method is implemented to derive the explicit approximate solutions for the time-fractional coupled Burger's equations. The including fractional derivative is in the Caputo sense. Special attention is given to prove the convergence of the method. The results are compared with those obtained by the exact at special cases of the fractional derivatives. The results reveal that the proposed method is very effective and simple.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Sara H. M. Hamed ◽  
Eltayeb A. Yousif ◽  
Arbab I. Arbab

A combination of homotopy perturbation method and Sumudu transform is applied to find exact and approximate solution of space and time fractional nonlinear Schrödinger equation. The fractional derivatives are described in the Caputo sense. The solutions are given in the form of convergent series with easily computable components. The results show that the method is effective and convenient for solving nonlinear differential equations of fractional order.


2009 ◽  
Vol 64 (12) ◽  
pp. 788-794 ◽  
Author(s):  
Mohamed M. Mousa ◽  
Aidarkhan Kaltayev

Abstract The fractional Fokker-Planck equation (FFPE) has been used in many physical transport problems which take place under the influence of an external force field and other important applications in various areas of engineering and physics. In this paper, by means of the homotopy perturbation method (HPM), exact and approximate solutions are obtained for two classes of the FFPE initial value problems. The method gives an analytic solution in the form of a convergent series with easily computed components. The obtained results show that the HPM is easy to implement, accurate and reliable for solving FFPEs. The method introduces a promising tool for solving other types of differential equation with fractional order derivatives


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yanqin Liu

We consider the initial stage of space-time fractional generalized biological equation in radial symmetry. Dimensionless multiorder fractional nonlinear equation was first given, and approximate solutions were derived in the form of series using the homotopy perturbation method with a new modification. And the influence of fractional derivative is also discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Dianchen Lu ◽  
Jie Liu

The homotopy analysis method is applied to solve the variable coefficient KdV-Burgers equation. With the aid of generalized elliptic method and Fourier’s transform method, the approximate solutions of double periodic form are obtained. These solutions may be degenerated into the approximate solutions of hyperbolic function form and the approximate solutions of trigonometric function form in the limit cases. The results indicate that this method is efficient for the nonlinear models with the dissipative terms and variable coefficients.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Vildan Gülkaç

Oxygen diffusion into the cells with simultaneous absorption is an important problem and it is of great importance in medical applications. The problem is mathematically formulated in two different stages. At the first stage, the stable case having no oxygen transition in the isolated cell is investigated, whereas at the second stage the moving boundary problem of oxygen absorbed by the tissues in the cell is investigated. In oxygen diffusion problem, a moving boundary is essential feature of the problem. This paper extends a homotopy perturbation method with time-fractional derivatives to obtain solution for oxygen diffusion problem. The method used in dealing with the solution is considered as a power series expansion that rapidly converges to the nonlinear problem. The new approximate analytical process is based on two-iterative levels. The modified method allows approximate solutions in the form of convergent series with simply computable components.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We implement relatively analytical methods, the homotopy perturbation method and the variational iteration method, for solving singular fractional partial differential equations of fractional order. The process of the methods which produce solutions in terms of convergent series is explained. The fractional derivatives are described in Caputo sense. Some examples are given to show the accurate and easily implemented of these methods even with the presence of singularities.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Wenping Chen ◽  
Shujuan Lü ◽  
Hu Chen ◽  
Lihua Jiang

Abstract In this paper, we solve the variable-coefficient fractional diffusion-wave equation in a bounded domain by the Legendre spectral method. The time fractional derivative is in the Caputo sense of order $\gamma \in (1,2)$ γ ∈ ( 1 , 2 ) . We propose two fully discrete schemes based on finite difference in temporal and Legendre spectral approximations in spatial discretization. For the first scheme, we discretize the time fractional derivative directly by the $L_{1}$ L 1 approximation coupled with the Crank–Nicolson technique. For the second scheme, we transform the equation into an equivalent form with respect to the Riemann–Liouville fractional integral operator. We give a rigorous analysis of the stability and convergence of the two fully discrete schemes. Numerical examples are carried out to verify the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document